Biostatistical Methods in Psychiatry
Chen T, Xu M, Tu J, et al
10.11919/j.issn.1002-0829.218014
Simpson’s Paradox: Examples
Wang B, Wu P, Kwan B, et al
10.11919/j.issn.1002-0829.218026
Assessing the Accuracy of Diagnostic Tests
Li F, He H
10.11919/j.issn.1002-0829.218052
Tests for paired count outcomes
Proudfoot JA, Lin T, Wang B, et al
10.1136/gpsych-2018-100004
Sample sizes based on three popular indices of risks
Wang H, Wang B, Tu XM, et al
10.1136/gpsych-2018-100011
Guidance for use of weights: an analysis of different types of weights and their implications when using SAS PROCs
Richardson S, Lin T, Li Y, et al
10.1136/gpsych-2018-100038
The p-value and model specification in statistics
Wang B, Zhou Z, Wang H, et al
10.1136/gpsych-2019-100081
Post hoc power analysis: is it an informative and meaningful analysis?
Zhang Y, Hedo R, Rivera A, et al
10.1136/gpsych-2019-100069
Homoscedasticity: an overlooked critical assumption for linear regression
Yang K, Tu J, Chen T
10.1136/gpsych-2019-100148
Machine learning methods in psychiatry: a brief introduction
Zhou Z, Wu T, Wang B, et al
10.1136/gpsych-2019-100171
Advanced machine learning methods in psychiatry: an introduction
Wu T, Zhou Z, Wang H, et al
10.1136/gpsych-2020-100197
Analysis of correlated data with feedback for time-dependent covariates in psychiatry research
Vazquez Arreola E, Wilson JR, Chen D.
10.1136/gpsych-2020-100263
Relations among sensitivity, specificity and predictive values of medical tests based on biomarkers
Wang H, Wang B, Zhang X, et al
10.1136/gpsych-2020-100453
Review of current controversial issues in clinical trials
Chow S, Chow SS, Pong A.
10.1136/gpsych-2021-100540
Partial least squares regression and principal component analysis: similarity and differences between two popular variable reduction approaches
Liu C, Zhang X, Nguyen TT, et al
10.1136/gpsych-2021-100662