Skip to main content
Log in

Fluoxetine

A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in Depressive Illness

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis: Fluoxetine1 is a new antidepressant which enhances serotoninergic neurotransmission through potent and selective inhibition of neuronal reuptake of serotonin. Metabolism by N-desmethylation occurs in man yielding desmethylfluoxetine, which also inhibits serotonin reuptake. Both the parent compound and metabolite possess elimination half-lives of several days facilitating the maintenance of steady-state plasma concentrations during long term treatment. Fluoxetine has overall therapeutic efficacy comparable with imipramine, amitriptyline and doxepin in patients with unipolar depression treated for 5 to 6 weeks, although it may be less effective than tricyclic antidepressants in relieving sleep disorders in depressed patients. Geriatric patients also responded as well to fluoxetine as to doxepin.

The symptomatic improvement in patients with unipolar depression during short term fluoxetine treatment has been satisfactorily maintained when therapy was extended for at least 6 months: the relapse rate was low and similar to that of imipramine. Preliminary data have shown that patients with bipolar depression gained similar therapeutic benefit from fluoxetine or imipramine. Other preliminary trials have indicated that fluoxetine may be useful in obsessive-compulsive disorders.

Usual doses of fluoxetine cause significantly fewer anticholinergic-type side effects than tricyclic antidepressants. Nausea, nervousness and insomnia are the most frequently reported fluoxetine-related adverse effects, but these have usually not been severe. Therapeutic doses of fluoxetine do not affect cardiac conduction intervals in patients without pre-existing cardiovascular disease and fluoxetine has been relatively safe in the small number of patients who have taken overdoses.

It has not been clearly established whether some types of depression may respond more readily to fluoxetine than other antidepressants, and its overall therapeutic efficacy has not been compared with other second generation antidepressants.

Thus, with its different and perhaps improved side effect profile compared with older tricyclic antidepressants, fluoxetine offers properties that could be used to advantage in many patients with depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronoff GR, Bergstrom RF, Pottratz ST, Sloan RS, Wolen RL, et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clinical Pharmacology and Therapeutics 36: 138–144, 1984

    PubMed  CAS  Google Scholar 

  • Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 313–334, 1986

    PubMed  CAS  Google Scholar 

  • Bergstrom RF, Farid KZ, McClurg JE, Lemberger L. The pharmacokinetics of fluoxetine in elderly subjects. II World Conference on Clinical Pharmacology and Therapeutics, Washington DC, July 31–Aug 5, 1983. Abstract no. 699, p. 120, 1983

  • Bergstrom R, Wolen R, Dhahir P, Hatcher B, Werner N, et al. Effect of food on the absorption of fluoxetine in normal subjects. 131st Annual Meeting of the American Pharmaceutical Association, Montreal, May 5–10, 1984. Abstract no. 64, Vol. 14, No. 1, 1984

  • Bergstrom RF, Wolen RL, Lemberger L, Tenbarge JL, Masco HL. Fluoxetine steady state pharmacokinetics in depressed patients. 133rd Annual Meeting of the American Pharmaceutical Association, San Francisco, March 16–20, 1986. Abstract no. P65, Vol. 16, No. 1, 1986a

  • Bergstrom RF, van Lier RBL, Lemberger L, Tenbarge JL. Absolute bioavailability of fluoxetine in beagle dogs. 133rd Annual Meeting of the American Pharmaceutical Association, San Francisco, March 16–20, 1986. Abstract no. P66, Vol. 16, No. 1, 1986b

  • Berzsenyi P, Galateo E, Valzelli L. Fluoxetine activity on muricidal aggression induced in rats by p-chlorophenylalanine. Aggressive Behaviour 9: 333–338, 1983

    CAS  Google Scholar 

  • Bowsher DJ, Rowe HM, Lemberger L. Pressor responses to tyramine and norepinephrine after subchronic administration of fluoxetine to man. Federation Proceedings 44: 1244, 1985

    Google Scholar 

  • Bremner JD. Fluoxetine in depressed patients: a comparison with imipramine. Journal of Clinical Psychiatry 45: 414–419, 1984

    PubMed  CAS  Google Scholar 

  • Broekkamp CL, Carrigou D, Lloyd KG. Olfactory bulbectomy induced deficit in passive avoidance acquisition: restoration by muscimol, SL 76 002, fenfluramine, quipazine and fluoxetine. British Journal of Pharmacology 69: 280P, 1980

    CAS  Google Scholar 

  • Brophy GT, Lake SG, Griffing SG, Farid WJ, Holzhausen KZ. Reversible phospholipidosis associated with fluoxetine administration in the mouse, rat and dog. Toxicology Letters 18: 143, 1983

    Google Scholar 

  • Bymaster FP, Wong DT. Effect of Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine on synthesis of 3H-serotonin from 3H-tryptophan in rat brain. Pharmacologist 16: 244, 1974

    Google Scholar 

  • Cazala P. Effects of Lilly 110140 (fluoxetine) on self-stimulation behavior in the dorsal and ventral regions of the lateral hypothalamus in the mouse. Psychopharmacology 71: 143–146, 1980

    PubMed  CAS  Google Scholar 

  • Chouinard G. A double-blind controlled trial of fluoxetine and amitriptyline in the treatment of outpatients with major depressive disorder. Journal of Clinical Psychiatry 46 (Sec. 2): 32–37, 1985

    PubMed  CAS  Google Scholar 

  • Clemens JA, Sawyer BD, Cerimele B. Further evidence that serotonin is a neurotransmitter involved in the control of prolactin secretion. Endocrinology 100: 692–698, 1977

    PubMed  CAS  Google Scholar 

  • Cohn JB, Wilcox C. A comparison of fluoxetine, imipramine, and placebo, in patients with major depressive disorder. Journal of Clinical Psychiatry 46 (Sec. 2): 26–31, 1985

    PubMed  CAS  Google Scholar 

  • De Long AF, Bergstrom RF, Lemberger L, Barrett JL, Doedens DJ. Fluoxetine-secobarbital interaction in humans. 39th National Meeting of the American Pharmaceutical Association Academy of Pharmaceutical Sciences, Minneapolis, October 20–24, 1985, Abstract no. 51, Vol. 15, No. 2, 1985

  • Fabre LF, Crismon L. Efficacy of fluoxetine in outpatients with major depression. Current Therapeutic Research 37: 115–123, 1985

    Google Scholar 

  • Feighner JP. A comparative trial of fluoxetine and amitriptyline in patients with major depressive disorder. Journal of Clinical Psychiatry 46: 369–372, 1985

    PubMed  CAS  Google Scholar 

  • Feighner JP, Cohn JB. Double-blind comparative trials of fluoxetine and doxepin in geriatric patients with major depressive disorder. Journal of Clinical Psychiatry 46 (Sec. 2): 20–25, 1985

    PubMed  CAS  Google Scholar 

  • Feldman RS, Smith WC. Chlordiazepoxide-fluoxetine interactions on food intake in free-feeding rats. Pharmacology, Biochemistry and Behaviour 8: 749–752, 1978

    CAS  Google Scholar 

  • Fisch C. Effect of fluoxetine on the electrocardiogram. Journal of Clinical Psychiatry 46: 42–44, 1985

    PubMed  CAS  Google Scholar 

  • Fontaine R, Chouinard G. Fluoxetine in the treatment of obsessive compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry 9: 605–608, 1985

    PubMed  CAS  Google Scholar 

  • Fornal C, Radulovacki M. Fenfluramine, fluoxetine and quipazine suppress sleep in rats. Society for Neuroscience 6: 51, 1980

    Google Scholar 

  • French ED, Vasquez SA, George R. Potentiation of morphine hyperthermia in cats by pimozide and fluoxetine hydrochloride. European Journal of Pharmacology 48: 351–356, 1978

    PubMed  CAS  Google Scholar 

  • Fuller RW. Drugs influencing serotoninergic neurotransmission. In Muller EE (Ed.) Neuroactive drugs in endocrinology, Elsevier/North-Holland Biomedical Press 1980

    Google Scholar 

  • Fuller RW, Baker JC. Further evidence for serotonin involvement in thermoregulation following morphine administration from studies with an inhibitor of serotonin uptake. Research Communications in Chemical Pathology and Pharmacology 8: 715–718, 1974

    PubMed  CAS  Google Scholar 

  • Fuller RW, Holland DR, Yen TT, Bemis KG, Stamm NB. Anti-hypertensive effects of fluoxetine and L-5-hydroxytryptophan in rats. Life Sciences 25: 1237–1247, 1979

    PubMed  CAS  Google Scholar 

  • Fuller RW, Perry KW, Molloy BB. Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine (Lilly 110140). Life Sciences 15: 1161–1171, 1974

    PubMed  CAS  Google Scholar 

  • Fuller RW, Perry KW, Molloy BB. Effect of 3-(p-trifluorome-thylphenoxy)-N-methyl-3-phenylpropylamine on the depletion of brain serotonin by 4-chloroamphetamine. Journal of Pharmacology and Experimental Therapeutics 193: 796–803, 1975a

    CAS  Google Scholar 

  • Fuller RW, Rathbun RC, Parti CJ. Inhibition of drug metabolism by fluoxetine. Research Communications in Chemical Pathology and Pharmacology 13: 353–356, 1976b

    PubMed  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Molloy BB. Potentiation of the L-5-hydroxytryptophan-induced elevation of plasma corticosterone levels in rats by a specific inhibitor of serotonin uptake. Research Communications in Chemical Pathology and Pharmacology 10: 193–196, 1975b

    PubMed  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Molloy BB. Pharmacologic evidence for a serotonin neural pathway involved in hypothalamus-pituitary-adrenal function in rats. Life Sciences 19: 337–346, 1976a

    PubMed  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Perry KW, Bymaster FP, Wong DT. Importance of duration of drug action in the antagonism of pchloroamphetamine depletion of brain serotonin — comparison of fluoxetine and chlorimipramine. Biochemical Pharmacology 27: 193–198, 1978

    PubMed  CAS  Google Scholar 

  • Garthwaite TL, Hagen TC. Evidence that serotonin stimulates a prolactin releasing factor in the rat. Neuroendocrinology 29: 215–220, 1979

    PubMed  CAS  Google Scholar 

  • Gebhart GF, Lorens SA. Attenuation of pethidine-induced anti-nociception by zimelidine, an inhibitor of 5-hydroxytryptamine reuptake. British Journal of Pharmacology 70: 411–414, 1980

    PubMed  CAS  Google Scholar 

  • Gibbons JL, Glusman M. Effects of quipazine, fluoxetine and fenfluramine on muricide in rats. Federation Proceedings 38: 257, 1979

    Google Scholar 

  • Gibbons JL, Glusman M, Barr GA, Bridger H, Leibowitz SF. Serotonergic mechanisms in aggression. Society for Neuroscience 4: 493, 1978

    Google Scholar 

  • Gibbs DM, Vale W. Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Research 280: 176–179, 1983

    PubMed  CAS  Google Scholar 

  • Golstein J, Schreiber S, Velkeniers B, Vanhaelst L. Effect of fluoxetine, a serotonin reuptake inhibitor, on the pituitary-thyroid axis in rat. European Journal of Pharmacology 91: 239–243, 1983

    PubMed  CAS  Google Scholar 

  • Górka Z, Wojtasik E, Kwiatek H, Maj T. Action of sympatho-mimetics in the behavioural despair test in rats. Communications in Psychopharmacology 3: 133–136, 1979

    PubMed  Google Scholar 

  • Goudie AJ, Thornton EW, Wheeler TJ. Effect of Lilly 110140, a specific inhibitor of 5-hydroxytryptamine uptake, on food and on 5-hydroxytryptophan-induced anorexia. Evidence for serotoninergic inhibition of feeding. Journal of Pharmacy and Pharmacology 28: 318–320, 1976

    CAS  Google Scholar 

  • Harms HH. The antidepressant agents desipramine, fluoxetine, fluroxamine and norzimelidine inhibit uptake of [3H] noradrenaline and [3H]5-hydroxytryptamine in slices of human and rat cortical brain tissue. Brain Research 275: 99–104, 1983

    PubMed  CAS  Google Scholar 

  • Hart JC, Leander JD. Reduction of palatability-induced fluid consumption by serotoninergic uptake inhibition with fluoxetine. Pharmacologist 26: 183, 1984

    Google Scholar 

  • Heel RC, Morley PA, Brogden RN, Carmine AA, Speight TM, et al. Zimelidine: a review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs 24: 169–206, 1982

    PubMed  CAS  Google Scholar 

  • Horng JS, Wong DT. Effects of serotonin uptake inhibitor, Lilly 110140, on transport of serotonin in rat and human blood platelets. Biochemical Pharmacology 25: 865–867, 1976

    PubMed  CAS  Google Scholar 

  • Hwang E, Magnussen I, Van Woert MH. Effects of chronic fluoxetine administration on serotonin metabolism. Research Communications in Chemical Pathology and Pharmacology 29: 79–98, 1980

    PubMed  CAS  Google Scholar 

  • Hynes MD, Fuller RW. The effect of fluoxetine on morphine analgesia, respiratory depression, and lethality. Drug Development Research 2: 33–42, 1982

    CAS  Google Scholar 

  • Hynes MD, Lochner MA, Bemis KG, Hymson DL. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors. Life Sciences 36: 2317–2323, 1985

    PubMed  CAS  Google Scholar 

  • Katz RJ, Carroll BJ. Intracranial reward after Lilly 110140 (fluoxetine HCl): evidence for an inhibitory role for serotonin. Psychopharmacology 51: 189–193, 1977

    PubMed  CAS  Google Scholar 

  • Kostowski W, Valzelli L, Kozak W, Bernasconi S. Activity of desipramine, fluoxetine and nomifensine on spontaneous and p-CPA-induced muricidal aggression. Pharmacological Research Communications 16: 265–271, 1984

    PubMed  CAS  Google Scholar 

  • Krulich L. The effect of a serotonin uptake inhibitor (Lilly 110140) on the secretion of prolactin in the rat. Life Sciences 17: 1141–1144, 1975

    PubMed  CAS  Google Scholar 

  • Larsen AA, Takemori AE. Effect of fluoxetine hydrochloride (Lilly 110140), a specific inhibitor of serotonin uptake, on morphine analgesia and the development of tolerance. Life Sciences 21: 1807–1812, 1977

    Google Scholar 

  • Lee RL, Spencer PSJ. The effect of clomipramine and other amine-uptake inhibitors on morphine analgesia in laboratory animals. Postgraduate Medical Journal 53 (Suppl. 4): 53–61, 1977

    PubMed  CAS  Google Scholar 

  • Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG, et al. Fluoxetine: clinical pharmacology and physiologic disposition. Journal of Clinical Psychiatry 46 (No. 3, sec. 2): 14–19, 1985a

    PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Bergstrom RF, Farid KZ, Enas GG. Effect of fluoxetine on psychomotor performance, physiologic re-sponse, and kinetics of ethanol. Clinical Pharmacology and Therapeutics 37: 658–664, 1985b

    PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Carmichael R, Crabtree R, Horng JS, et al. Fluoxetine, a selective serotonin uptake inhibitor. Clinical Pharmacology and Therapeutics 23: 421–429, 1978

    PubMed  CAS  Google Scholar 

  • Lin MT. Effects of specific inhibitors of 5-hydroxytryptamine uptake on thermoregulation in rats. Journal of Physiology 284: 147–154, 1978

    PubMed  CAS  Google Scholar 

  • Lin MT, Tsay BL, Fan YC. Effects of 5-hydroxytryptamine, fluoxetine and chlorimipramine on reflex bradycardia in rats. Journal of Pharmacy and Pharmacology 32: 493–496, 1980b

    PubMed  CAS  Google Scholar 

  • Lin MT, Chandra A, Chi M-L, Kau C-L. Effects of increasing serotonergic receptor activity in brain on analgesic activity in rats. Experimental Neurology 68: 548–554, 1980a

    PubMed  CAS  Google Scholar 

  • Locatelli V, Panerai AE, Cocchi D, Gil-Ad I, Mantegazza P, et al. Drug-induced changes of brain serotoninergic tone and insulin-induced growth hormone release in the dog. Neuroendocrinology 25: 84–104, 1978

    PubMed  CAS  Google Scholar 

  • Maggi A, U’Prichard DC, Enna SJ. Differential effects of anti-depressant treatment on brain monoaminergic receptors. European Journal of Pharmacology 61: 91–98, 1980

    PubMed  CAS  Google Scholar 

  • Malec D, Langwinski R. Effect of quipazine and fluoxetine on analgesic-induced catalepsy and antinociception in the rat. Journal of Pharmacy and Pharmacology 32: 71–73, 1980

    PubMed  CAS  Google Scholar 

  • Masala A, Delitala G, Devilla L, Alagna S, Rovasio PP. Enhancement of insulin-induced prolactin secretion by fluoxetine in man. Journal of Clinical Endocrinology and Metabolism 49: 350–352, 1979

    PubMed  CAS  Google Scholar 

  • McElroy JF, DuPont AF, Feldman RS. The effects of fenfluramine and fluoxetine on the acquisition of a conditioned avoidance response in rats. Psychopharmacology 77: 356–359, 1982

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Young M, Metz J, Fang VS, Schyve PM, et al. Extrapyramidal side effects and increased serum prolactin following fluoxetine, a new antidepressant. Journal of Neural Transmission 45: 165–175, 1979

    PubMed  CAS  Google Scholar 

  • Messing RB, Phebus L, Fisher LA, Lytle LD. Analgesic effect of fluoxetine hydrochloride (Lilly 110140) a specific inhibitor of serotonin uptake. Psychopharmacology Communications 1: 511–521, 1975

    PubMed  CAS  Google Scholar 

  • Mishra J, Janowsky A. Sulser F. Subsensitivity of the norepine-phrine receptor-coupled adenylate cyclase system in brain: effects of nisoxetine versus fluoxetine. European Journal of Pharmacology 60: 379–382, 1979

    CAS  Google Scholar 

  • Morgan WW, Herbert DC. Elevation of serum prolactin levels after the inhibition of serotonin uptake. Endocrinology 103: 1016–1022, 1978

    PubMed  CAS  Google Scholar 

  • Nilsson BS. Adverse reactions in connection with zimelidine treatment — a review. Acta Psychiatrica Scandinavica 68 (Suppl. 308): 115–119, 1983

    Google Scholar 

  • Ortmann R, Waldmeier PC, Radeke E, Feiner A, Delini-Stula A. The effects of 5-HT uptake-and MAO-inhibitors on L-5-HTP-induced excitation in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 311: 185–192, 1980

    PubMed  CAS  Google Scholar 

  • Pohorecky LA, Brick J, Sun JY. Serotoninergic involvement in the effect of ethanol on body temperature in rats. Journal of Pharmacy and Pharmacology 28: 157–159, 1976

    PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M. Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. European Journal of Pharmacology 57: 201–210, 1979

    PubMed  CAS  Google Scholar 

  • Quitkin FM, Schwartz D, Liebowitz MR, Stewart JR. Atypical depressives: a preliminary report of antidepressant response and sleep patterns. Psychopharmacology Bulletin 18: 78–80, 1982

    Google Scholar 

  • Quock RM, Beal GA. Fenfluramine-induced hyperthermia and stimulation in the rabbit. Research Communications in Chemical Pathology and Pharmacology 13: 401–409, 1976

    PubMed  CAS  Google Scholar 

  • Reid LR, Threlkeld PG, Wong DT. Reversible reduction of food intake and body weight by chronic administration of fluoxetine. Pharmacologist 26: 184, 1984

    Google Scholar 

  • Reimherr FW, Wood DR, Byerley B, Brainard J, Grosser BI. Characteristics of responders to fluoxetine. Psychopharmacology Bulletin 20: 70–72, 1984

    PubMed  CAS  Google Scholar 

  • Rickels K, Smith WT, Glaudin V, Amsterdam JB, Weise C, et al. Comparison of two dosage regimens of fluoxetine in major depression. Journal of Clinical Psychiatry 46 (Sec. 2): 38–41, 1985

    PubMed  CAS  Google Scholar 

  • Rockman GE, Amit Z, Brown ZW, Bourque C, Ogren S-O. An investigation of the mechanisms of action of 5-hydroxytryptamine in the suppression of ethanol intake. Neuropharmacology 21: 341–347, 1982

    PubMed  CAS  Google Scholar 

  • Rowe H, Carmichael R, Lemberger L. The effect of fluoxetine on warfarin metabolism in the rat and in man. Life Sciences 23: 807–812, 1978

    PubMed  CAS  Google Scholar 

  • Rowland N, Antelman SM, Kocan D. Differences among ‘serotonergic’ anorectics in a cross-tolerance paradigm: do they all act on serotonin systems. European Journal of Pharmacology 81: 57–66, 1982

    PubMed  CAS  Google Scholar 

  • Ruzsas C, Limonta P, Martini L. Role of serotoninergic neurones in the control of gonadotrophin and prolactin secretion in the rat. Journal of Endocrinology 94: 83–89, 1982

    PubMed  CAS  Google Scholar 

  • Saletu B, Grünberger J. Classification and determination of cerebral bioavailability of fluoxetine: pharmacokinetic, pharmaco-EEG, and psychometric analyses. Journal of Clinical Psychiatry 46: 45–52, 1985

    PubMed  CAS  Google Scholar 

  • Sapun DI, Farah JM, Meuller GP. Evidence for serotonin stimulation of pituitary beta-endorphin (β-end) release in rats. 62nd Annual Meeting of the Endocrine Society, June 1980, Abstract no. 572, p. 217, 1980

  • Schmidt MJ, Thornberry JF. Norepinephrine-stimulated cyclic AMP accumulation in brain slices in vitro after serotonin depletion or chronic administration of selective amine reuptake inhibitors. Archives Internationales de Pharmacodynamie et de Therapie 229: 42–51, 1977

    PubMed  CAS  Google Scholar 

  • Slater IH, Jones GT, Moore RA. Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17: 383–389, 1978

    PubMed  CAS  Google Scholar 

  • Slater IH, Rathbun RC, Kattan R. Role of 5-hydroxytryptaminergic and adrenergic mechanism in antagonism of reserpine-induced hypothermia in mice. Journal of Pharmacy and Pharmacology 31: 108–110, 1979

    PubMed  CAS  Google Scholar 

  • Smallwood JK, Holland DR, Steinberg MI. Cardiovascular effects of fluoxetine, norfluoxetine, and amitriptyline in pentobarbital anesthetised dogs. Federation Proceedings 44: 1101, 1985

    Google Scholar 

  • Soliman KFA, Gabriel NN. Effect of biogenic amines reuptake inhibition on ethanol induced hypothermia. General Pharmacology 14: 461–463, 1983

    PubMed  CAS  Google Scholar 

  • Squires R. Antagonism of p-chloroamphetamine (PCA) induced depletion of 5-HT from rat brain by some thymoleptics and other psychotropic drugs. Acta Pharmacologica et Toxicologica 31 (Suppl. 1): 35, 1972

    Google Scholar 

  • Stark P, Hardison CD. A review of multicenter controlled studies of fluoxetine vs imipramine and placebo in outpatients with major depressive disorder. Journal of Clinical Psychiatry 46 (Sec. 2): 53–58, 1985

    PubMed  CAS  Google Scholar 

  • Sugrue MF, McIndewar I. Effect of blockade of 5-hydroxytryptamine re-uptake on drug-induced antinociception in the rat. Journal of Pharmacy and Pharmacology 28: 447–448, 1976

    PubMed  CAS  Google Scholar 

  • Sulser F. Mode of action of antidepressant drugs. Journal of Clinical Psychiatry 44: 14–20, 1983

    PubMed  CAS  Google Scholar 

  • Turner SM, Jacob RG, Beidel DC, Himmelhoch J. Fluoxetine treatment of obsessive-compulsive disorder. Journal of Clinical Psychopharmacology 5: 207–212, 1985

    PubMed  CAS  Google Scholar 

  • Wernicke JF. The side effect profile and safety of fluoxetine. Journal of Clinical Psychiatry 46 (Sec. 2): 59–67, 1985

    PubMed  CAS  Google Scholar 

  • Wernicke JF, Bremner JD. Fluoxetine effective in the long term treatment of depression. British Journal of Clinical Practice 40 (Suppl. 45): in press, 1986

  • Wernicke JF, Dunlop SR, Dornseif BE, Zerbe AL. Fixed dose fluoxetine therapy for depression. Psychopharmacology Bulletin 23: in press, 1986

  • Wielosz M, Dall’Olio A, De Gaetano G, Garattini S. Effect of two nontricyclic antidepressant drugs on [14C]-5-hydroxytryptamine uptake by rat platelets. Journal of Pharmacy and Pharmacology 29: 546–549, 1977

    PubMed  CAS  Google Scholar 

  • Wilson GA, Furman BL. Effects of inhibitors of 5-hydroxytrypt-amine uptake on plasma glucose and their interaction with 5-hydroxytryptophan in producing hypoglycaemia in mice. European Journal of Pharmacology 78: 263–270, 1982

    PubMed  CAS  Google Scholar 

  • Wold RR, Joost WJ, Griffing F, Marroquin F, Harris PN. Phos-pholipid accumulation in rats produced by fluoxetine and chlorphentermine. Toxicology and Applied Pharmacology 37: 118, 1976

    Google Scholar 

  • Wong DT, Bymaster FP. Subsensitivity of serotonin receptors after long-term treatment of rats with fluoxetine. Research Communications in Chemical Pathology and Pharmacology 32: 41–51, 1981

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Horng JS, Molloy BB. A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Journal of Pharmacology and Experimental Therapeutics 193: 804–811, 1975

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW. Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Development Research 6: 397–403, 1985a

    CAS  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Threlkeld PG. Fluoxetine and two other serotonin uptake inhibitors without affinity for neuronal receptors. Biochemical Pharmacology 32: 1287–1293, 1983

    PubMed  CAS  Google Scholar 

  • Wong DT, Horng JS, Bymaster FP, Houser KL, Molloy BB. A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy) -N-methyl-3-phenylpropylamine. Life Sciences 15: 471–479, 1974

    PubMed  CAS  Google Scholar 

  • Wong DT, Reid LR, Bymaster FP, Threlkeld PG. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors. Journal of Neural Transmission 64: 251–269, 1985b

    PubMed  CAS  Google Scholar 

  • Wong DT, Yen TT. Suppression of appetite and reduction of body weight in normal and obese mice by fluoxetine. Federation Proceedings 44: 1162, 1985

    CAS  Google Scholar 

  • Wurtman JJ, Wurtman RJ. Fenfluramine and fluoxetine spare protein consumption while suppressing caloric intake by rats. Science 198: 1178–1180, 1977

    PubMed  CAS  Google Scholar 

  • Wurtman JJ, Wurtman RJ. Fenfluramine and other serotoninergic drugs depress food intake and carbohydrate consumption while sparing protein consumption. Current Medical Research and Opinion 6 (Suppl. 1): 28–33, 1979

    CAS  Google Scholar 

  • Zabik JE, Roache JD, Sidor R, Nash JF. The effects of fluoxetine on ethanol preference in the rat. Pharmacologist 24: 204, 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: F.J. Ayd Jr, Ayd Medical Communications, Baltimore, Maryland, USA; R.J. Baldessarini, Mailman Research Center, McLean Hospital, Belmont, Massachusetts, USA; T.A. Ban, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA; S. Garattini, Istituto di Ricerche Famacologiche ‘Mario Negri’, Milano, Italy; M. Lader, Institute of Psychiatry, London, England; P. Pichot, Clinique des Maladies Mentales et de L’Encéphale, Centre Hospitalier Saint-Anne, Paris, France; R. Takahashi, Department of Neuropsychiatry, Tokyo Medical and Dental University, Tokyo, Japan; P. Turner, St Bartholomew’s Hospital Medical College, University of London, London, England.

‘Prozac’ (Eli Lilly & Co.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfield, P., Heel, R.C. & Lewis, S.P. Fluoxetine. Drugs 32, 481–508 (1986). https://doi.org/10.2165/00003495-198632060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198632060-00002

Keywords

Navigation