Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research

Abstract

The last decade of research into the pharmacogenetics of antipsychotics has seen the development of genetic tests to determine the patients’ metabolic status and the first attempts at personalization of antipsychotic treatment. The most significant results are the association between drug metabolic polymorphisms, mainly in cytochrome P450 genes, with variations in drug metabolic rates and side effects. Patients with genetically determined CYP2D6 poor metabolizer (PMs) status may require lower doses of antipsychotic. Alternatively, CYP2D6 ultrarapid matabolizers (UMs) will need increased drug dosage to obtain therapeutic response. Additionally, polymorphisms in dopamine and serotonin receptor genes are repeatedly found associated with response phenotypes, probably reflecting the strong affinities that most antipsychotics display for these receptors. In particular, there is important evidence suggesting association between dopamine 2 receptor (D2) polymorphisms (Taq I and −141-C Ins/Del) and a dopamine 3 receptor (D3) polymorphism (Ser9Gly) with antipsychotic response and drug-induced tardive dyskinesia. Additionally, there is accumulating evidence indicating the influence of a 5-HT2C polymorphism (−759−T/C) in antipsychotic-induced weight gain. Application of this knowledge to clinical practice is slowly gathering pace, with pretreatment determination of individual's drug metabolic rates, via CYP genotyping, leading the field. Genetic determination of patients’ metabolic status is expected to bring clinical benefits by helping to adjust therapeutic doses and reduce adverse reactions. Genetic tests for the pretreatment prediction of antipsychotic response, although still in its infancy, have obvious implications for the selection and improvement of antipsychotic treatment. These developments can be considered as successes, but the objectives of bringing pharmacogenetic and pharmacogenomic research in psychiatric clinical practice are far from being realized. Further development of genetic tests is required before the concept of tailored treatment can be applied to psychopharmatherapy. This review aims to summarize the key findings from the last decade of research in the field. Current knowledge on genetic prediction of drug metabolic status, general response and drug-induced side effects will be reviewed and future pharmacogenomic and epigenetic research will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miyamoto S, Duncan GE, Marx CE, Lieberman JA . Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10: 79–104.

    Article  CAS  PubMed  Google Scholar 

  2. Kerwin RW, Osborne S . Antipsychotic drugs. Medicine 2000; 28: 23–25.

    Article  Google Scholar 

  3. Lieberman JA . Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 2004; 18: 251–267.

    Article  CAS  PubMed  Google Scholar 

  4. Curran MP, Perry CM . Spotlight on amisulpride in schizophrenia. CNS Drugs 2002; 16: 207–211.

    Article  PubMed  Google Scholar 

  5. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  6. Black K, Peters L, Rui Q, Milliken H, Whitehorn D, Kopala LC . Duration of untreated psychosis predicts treatment outcome in an early psychosis program. Schizophr Res 2001; 47: 215–222.

    Article  CAS  PubMed  Google Scholar 

  7. Drake RJ, Haley CJ, Akhtar S, Lewis SW . Causes and consequences of duration of untreated psychosis in schizophrenia. Br J Psychiatry 2000; 177: 511–515.

    Article  CAS  PubMed  Google Scholar 

  8. Perkins DO, Gu H, Boteva K, Lieberman JA . Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 2005; 162: 1785–1804.

    Article  PubMed  Google Scholar 

  9. Knapp M, Kanavos P, King D, Yesudian HM . Economic issues in access to medications: schizophrenia treatment in England. Int J Law Psychiatry 2005; 28: 514–531.

    Article  PubMed  Google Scholar 

  10. Norton RM . Clinical pharmacogenomics: applications in pharmaceutical R&D. Drug Discov Today 2001; 6: 180–185.

    Article  PubMed  Google Scholar 

  11. Pickar D, Rubinow K . Pharmacogenomics of psychiatric disorders. Trends Pharmacol Sci 2001; 22: 75–83.

    Article  CAS  PubMed  Google Scholar 

  12. Cardno AG, Sham PC, Murray RM, McGuffin P . Twin study of symptom dimensions in psychoses. Br J Psychiatry 2001; 179: 39–45.

    Article  CAS  PubMed  Google Scholar 

  13. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56: 162–168.

    Article  CAS  PubMed  Google Scholar 

  14. McGuffin P, Owen MJ, Farmer AE . Genetic basis of schizophrenia. Lancet 1995; 346: 678–682.

    Article  CAS  PubMed  Google Scholar 

  15. Waddington JL, Youssef HA . The expression of schizophrenia, affective disorder and vulnerability to tardive dyskinesia in an extensive pedigree. Br J Psychiatry 1988; 153: 376–381.

    Article  CAS  PubMed  Google Scholar 

  16. DeLisi LE, Dauphinais D . Neuroleptic responsiveness in siblings concordant for schizophrenia. Arch Gen Psychiatry 1989; 46: 477.

    Article  CAS  PubMed  Google Scholar 

  17. Vojvoda D, Grimmell K, Sernyak M . Monozygotic twins concordant for response to clozapine. Lancet 1996; 347: 61.

    Article  CAS  PubMed  Google Scholar 

  18. Horacek J, Libiger J, Hoschl C, Borzova K, Hendrychova I . Clozapine-induced concordant agranulocytosis in monozygotic twins. Int J Psychiatry Clin Pract 2001; 5: 71–73.

    Article  Google Scholar 

  19. Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T et al. Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 2001; 104: 375–379.

    Article  CAS  PubMed  Google Scholar 

  20. Mata I, Madoz V, Arranz MJ, Sham P, Murray RM . Olanzapine: concordant response in monozygotic twins with schizophrenia. Br J Psychiatry 2001; 178: 86.

    Article  CAS  PubMed  Google Scholar 

  21. Wehmeier PM, Gebhardt S, Schmidtke J, Remschmidt H, Hebebrand J, Theisen FM . Clozapine: weight gain in a pair of monozygotic twins concordant for schizophrenia and mild mental retardation. Psychiatry Res 2005; 133: 273–276.

    Article  CAS  PubMed  Google Scholar 

  22. Theisen FM, Gebhardt S, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg JC et al. Clozapine-induced weight gain: a study in monozygotic twins and same-sex sib pairs. Psychiatr Genet 2005; 15: 285–289.

    Article  PubMed  Google Scholar 

  23. Weber WW . Pharmacogenetics. Oxford University Press: New York, 1997.

    Google Scholar 

  24. Leysen JE . Receptor profile of antipsychotics. In: Ellenbroek BA, Cools AR (eds). Atypical antipsychotics. Basel/Switzerland: Bikhäuser Verlag, 2000, pp 57–81.

    Chapter  Google Scholar 

  25. Arranz MJ, Munro J, Osborne S, Collier DA, Kerwin RW . Difficulties in replication of results. Lancet 2000; 356: 1359–1360.

    Article  CAS  PubMed  Google Scholar 

  26. Kirchheiner J, Fuhr U, Brockmoller J . Pharmacogenetics-based therapeutic recommendations – ready for clinical practice? Nat Rev Drug Discov 2005; 4: 639–647.

    Article  CAS  PubMed  Google Scholar 

  27. Rietschel M, Kennedy JL, Macciardi F, Meltzer HY . Application of pharmacogenetics to psychotic disorders: the first consensus conference. Schizophr Res 1999; 37: 191–196.

    Article  CAS  PubMed  Google Scholar 

  28. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  29. Nebert DW, Dieter MZ . The evolution of drug metabolism. Pharmacology 2000; 61: 124–135.

    Article  CAS  PubMed  Google Scholar 

  30. Lieberman JA, Koreen AR, Chakos M, Sheitman B, Woerner M, Alvir JM et al. Factors influencing treatment response and outcome of first-episode schizophrenia: implications for understanding the pathophysiology of schizophrenia. J Clin Psychiatry 1996; 57 (Suppl 9): 5–9.

    PubMed  Google Scholar 

  31. Lane HY, Hsu SK, Liu YC, Chang YC, Huang CH, Chang WH . Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol 2005; 25: 6–11.

    Article  CAS  PubMed  Google Scholar 

  32. Altamura AC, Bassetti R, Sassella F, Salvadori D, Mundo E . Duration of untreated psychosis as a predictor of outcome in first-episode schizophrenia: a retrospective study. Schizophr Res 2001; 52: 29–36.

    Article  CAS  PubMed  Google Scholar 

  33. Kirchheiner J, Brosen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.

    Article  CAS  PubMed  Google Scholar 

  34. Spina E, Scordo MG, D’Arrigo C . Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol 2003; 17: 517–538.

    Article  CAS  PubMed  Google Scholar 

  35. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A . Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Leon J, Armstrong SC, Cozza KL . The dosing of atypical antipsychotics. Psychosomatics 2005; 46: 262–273.

    Article  CAS  PubMed  Google Scholar 

  37. Spina E, de Leon J . Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 2007; 100: 4–22.

    Article  CAS  PubMed  Google Scholar 

  38. de Leon J, Armstrong SC, Cozza KL . Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 2006; 47: 75–85.

    Article  PubMed  Google Scholar 

  39. McGavin JK, Goa KL . Aripiprazole. CNS Drugs 2002; 16: 779–786.

    Article  CAS  PubMed  Google Scholar 

  40. Prior TI, Baker GB . Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci 2003; 28: 99–112.

    PubMed  PubMed Central  Google Scholar 

  41. Furukori H, Kondo T, Yasui N, Otani K, Tokinaga N, Nagashima U et al. Effects of itraconazole on the steady-state plasma concentrations of bromperidol and reduced bromperidol in schizophrenic patients. Psychopharmacology (Berl) 1999; 145: 189–192.

    Article  CAS  Google Scholar 

  42. de Leon J . Glucuronidation enzymes, genes and psychiatry. Int J Neuropsychopharmacol 2003; 6: 57–72.

    Article  CAS  PubMed  Google Scholar 

  43. Eiermann B, Engel G, Johansson I, Zanger UM, Bertilsson L . The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol 1997; 44: 439–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang J, Gorrod JW . Metabolism, pharmacogenetics, and metabolic drug-drug interactions of antipsychotic drugs. Cell Mol Neurobiol 1999; 19: 491–510.

    Article  CAS  PubMed  Google Scholar 

  45. Doude van Troostwijk LJ, Koopmans RP, Vermeulen HD, Guchelaar HJ . CYP1A2 activity is an important determinant of clozapine dosage in schizophrenic patients. Eur J Pharm Sci 2003; 20: 451–457.

    Article  CAS  PubMed  Google Scholar 

  46. Fang J, Coutts RT, McKenna KF, Baker GB . Elucidation of individual cytochrome P450 enzymes involved in the metabolism of clozapine. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 592–599.

    Article  CAS  PubMed  Google Scholar 

  47. Heiser P, Schuler-Springorum M, Schulte E, Hausmann C, Remschmidt H, Krieg JC et al. Pharmacokinetics of clozapine and its metabolites in hippocampal HT22 cells. Eur J Pharmacol 2003; 476: 167–172.

    Article  CAS  PubMed  Google Scholar 

  48. Tugnait M, Hawes EM, McKay G, Eichelbaum M, Midha KK . Characterization of the human hepatic cytochromes P450 involved in the in vitro oxidation of clozapine. Chem Biol Interact 1999; 118: 171–189.

    Article  CAS  PubMed  Google Scholar 

  49. Fang J, Baker GB, Silverstone PH, Coutts RT . Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol Neurobiol 1997; 17: 227–233.

    Article  CAS  PubMed  Google Scholar 

  50. de Leon J, Diaz FJ, Wedlund P, Josiassen RC, Cooper TB, Simpson GM . Haloperidol half-life after chronic dosing. J Clin Psychopharmacol 2004; 24: 656–660.

    Article  CAS  PubMed  Google Scholar 

  51. Ring BJ, Catlow J, Lindsay TJ, Gillespie T, Roskos LK, Cerimele BJ et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–666.

    CAS  PubMed  Google Scholar 

  52. Scordo MG, Spina E . Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics 2002; 3: 201–218.

    Article  CAS  PubMed  Google Scholar 

  53. Prior TI, Chue PS, Tibbo P, Baker GB . Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol 1999; 9: 301–309.

    Article  CAS  PubMed  Google Scholar 

  54. Berecz R, Dorado P, De La RA, Caceres MC, Degrell I, Llerena A . The role of cytochrome P450 enzymes in the metabolism of risperidone and its clinical relevance for drug interactions. Curr Drug Targets 2004; 5: 573–579.

    Article  CAS  PubMed  Google Scholar 

  55. Prakash C, Kamel A, Cui D, Whalen RD, Miceli JJ, Tweedie D . Identification of the major human liver cytochrome P450 isoform(s) responsible for the formation of the primary metabolites of ziprasidone and prediction of possible drug interactions. Br J Clin Pharmacol 2000; 49: 35s–342S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boulton DW, DeVane CL, Liston HL, Markowitz JS . In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci 2002; 71: 163–169.

    Article  CAS  PubMed  Google Scholar 

  57. Hiemke C, Hartter S . Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11–28.

    Article  CAS  PubMed  Google Scholar 

  58. Eichelbaum M, Evert B . Influence of pharmacogenetics on drug disposition and response. Clin Exp Pharmacol Physiol 1996; 23: 983–985.

    Article  CAS  PubMed  Google Scholar 

  59. Ingelman-Sundberg M, Johansson I, Persson I, Oscarson M, Hu Y, Bertilsson L et al. Genetic polymorphism of cytochrome P450. Functional consequences and possible relationship to disease and alcohol toxicity. EXS 1994; 71: 197–207.

    CAS  PubMed  Google Scholar 

  60. Bradford LD . CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–243.

    Article  CAS  PubMed  Google Scholar 

  61. de Leon J . AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 2006; 6: 277–286.

    Article  CAS  PubMed  Google Scholar 

  62. Riedel M, Schwarz MJ, Strassnig M, Spellmann I, Muller-Arends A, Weber K et al. Risperidone plasma levels, clinical response and side-effects. Eur Arch Psychiatry Clin Neurosci 2005; 255: 261–268.

    Article  PubMed  Google Scholar 

  63. de Leon J, Susce MT, Pan RM, Fairchild M, Koch WH, Wedlund PJ . The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66: 15–27.

    Article  CAS  PubMed  Google Scholar 

  64. Kakihara S, Yoshimura R, Shinkai K, Matsumoto C, Goto M, Kaji K et al. Prediction of response to risperidone treatment with respect to plasma concencentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6. Int Clin Psychopharmacol 2005; 20: 71–78.

    Article  PubMed  Google Scholar 

  65. Arranz MJ, Dawson E, Shaikh S, Sham P, Sharma T, Aitchison K et al. Cytochrome P4502D6 genotype does not determine response to clozapine. Br J Clin Pharmacol 1995; 39: 417–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aitchison KJ, Munro J, Wright P, Smith S, Makoff AJ, Sachse C et al. Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br J Clin Pharmacol 1999; 48: 388–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sachse C, Brockmoller J, Bauer S, Roots I . Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murayama N, Soyama A, Saito Y, Nakajima Y, Komamura K, Ueno K et al. Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 2004; 308: 300–306.

    Article  CAS  PubMed  Google Scholar 

  69. Bozikas VP, Papakosta M, Niopas I, Karavatos A, Mirtsou-Fidani V . Smoking impact on CYP1A2 activity in a group of patients with schizophrenia. Eur Neuropsychopharmacol 2004; 14: 39–44.

    Article  CAS  PubMed  Google Scholar 

  70. Pavanello S, Pulliero A, Lupi S, Gregorio P, Clonfero E . Influence of the genetic polymorphism in the 5′-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res 2005; 587: 59–66.

    Article  CAS  PubMed  Google Scholar 

  71. Kootstra-Ros JE, Smallegoor W, van der WJ . The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem 2005; 42: 216–219.

    Article  CAS  PubMed  Google Scholar 

  72. Ozdemir V, Kalow W, Okey AB, Lam MS, Albers LJ, Reist C et al. Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C-->A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J Clin Psychopharmacol 2001; 21: 603–607.

    Article  CAS  PubMed  Google Scholar 

  73. Eap CB, Bender S, Jaquenoud SE, Cucchia G, Jonzier-Perey M, Baumann P et al. Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 2004; 24: 214–219.

    Article  CAS  PubMed  Google Scholar 

  74. Bondolfi G, Morel F, Crettol S, Rachid F, Baumann P, Eap CB . Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Ther Drug Monit 2005; 27: 539–543.

    Article  CAS  PubMed  Google Scholar 

  75. Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001; 299: 825–831.

    CAS  PubMed  Google Scholar 

  76. Kalgutkar AS, Taylor TJ, Venkatakrishnan K, Isin EM . Assessment of the contributions of CYP3A4 and CYP3A5 in the metabolism of the antipsychotic agent haloperidol to its potentially neurotoxic pyridinium metabolite and effect of antidepressants on the bioactivation pathway. Drug Metab Dispos 2003; 31: 243–249.

    Article  CAS  PubMed  Google Scholar 

  77. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    Article  CAS  PubMed  Google Scholar 

  78. King BP, Khan TI, Aithal GP, Kamali F, Daly AK . Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 2004; 14: 813–822.

    Article  CAS  PubMed  Google Scholar 

  79. van der WJ, Steijns LS, van Weelden MJ, de Haan K . The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001; 11: 287–291.

    Article  Google Scholar 

  80. Cascorbi I . Genetic basis of toxic reactions to drugs and chemicals. Toxicol Lett 2006; 162: 16–28.

    Article  CAS  PubMed  Google Scholar 

  81. Mori A, Maruo Y, Iwai M, Sato H, Takeuchi Y . UDP-glucuronosyltransferase 1A4 polymorphisms in a Japanese population and kinetics of clozapine glucuronidation. Drug Metab Dispos 2005; 33: 672–675.

    Article  CAS  PubMed  Google Scholar 

  82. Ingelman-Sundberg M . Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 2004; 25: 193–200.

    Article  CAS  PubMed  Google Scholar 

  83. de Leon J . Atypical antipsychotic dosing: the effect of smoking and caffeine. Psychiatr Serv 2004; 55: 491–493.

    Article  PubMed  Google Scholar 

  84. de Leon J, Diaz FJ, Rogers T, Browne D, Dinsmore L, Ghosheh OH et al. A pilot study of plasma caffeine concentrations in a US sample of smoker and nonsmoker volunteers. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 165–171.

    Article  CAS  PubMed  Google Scholar 

  85. Mamo D, Kapur S, Shammi CM, Papatheodorou G, Mann S, Therrien F et al. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry 2004; 161: 818–825.

    Article  PubMed  Google Scholar 

  86. Kapur S, Remington G . Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 2001; 50: 873–883.

    Article  CAS  PubMed  Google Scholar 

  87. Kapur S, Seeman P . Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 2001; 158: 360–369.

    Article  CAS  PubMed  Google Scholar 

  88. Himei A, Koh J, Sakai J, Inada Y, Akabame K, Yoneda H . The influence on the schizophrenic symptoms by the DRD2Ser/Cys311 and -141C Ins/Del polymorphisms. Psychiatry Clin Neurosci 2002; 56: 97–102.

    Article  CAS  PubMed  Google Scholar 

  89. Wu S, Xing Q, Gao R, Li X, Gu N, Feng G et al. Response to chlorpromazine treatment may be associated with polymorphisms of the DRD2 gene in Chinese schizophrenic patients. Neurosci Lett 2005; 376: 1–4.

    Article  CAS  PubMed  Google Scholar 

  90. Schafer M, Rujescu D, Giegling I, Guntermann A, Erfurth A, Bondy B et al. Association of short-term response to haloperidol treatment with a polymorphism in the dopamine D(2) receptor gene. Am J Psychiatry 2001; 158: 802–804.

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki A, Kondo T, Mihara K, Yasui-Furukori N, Ishida M, Furukori H et al. The −141C Ins/Del polymorphism in the dopamine D2 receptor gene promoter region is associated with anxiolytic and antidepressive effects during treatment with dopamine antagonists in schizophrenic patients. Pharmacogenetics 2001; 11: 545–550.

    Article  CAS  PubMed  Google Scholar 

  92. Dahmen N, Muller MJ, Germeyer S, Rujescu D, Anghelescu I, Hiemke C et al. Genetic polymorphisms of the dopamine D2 and D3 receptor and neuroleptic drug effects in schizophrenic patients. Schizophr Res 2001; 49: 223–225.

    Article  CAS  PubMed  Google Scholar 

  93. Hwang R, Shinkai T, De Luca V, Muller DJ, Ni X, Macciardi F et al. Association study of 12 polymorphisms spanning the dopamine D(2) receptor gene and clozapine treatment response in two treatment refractory/intolerant populations. Psychopharmacology (Berl) 2005; 181: 179–187.

    Article  CAS  Google Scholar 

  94. Hwang R, Shinkai T, Deluca V, Macciardi F, Potkin S, Meltzer HY et al. Dopamine D2 receptor gene variants and quantitative measures of positive and negative symptom response following clozapine treatment. Eur Neuropsychopharmacol 2006; 16: 248–259.

    Article  CAS  PubMed  Google Scholar 

  95. Lencz T, Robinson DG, Xu K, Ekholm J, Sevy S, Gunduz-Bruce H et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry 2006; 163: 529–531.

    Article  PubMed  Google Scholar 

  96. Lane HY, Lee CC, Chang YC, Lu CT, Huang CH, Chang WH . Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int J Neuropsychopharmacol 2004; 7: 461–470.

    Article  CAS  PubMed  Google Scholar 

  97. Bolonna AA, Arranz MJ, Munro J, Osborne S, Petouni M, Martinez M et al. No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response. Neurosci Lett 2000; 280: 65–68.

    Article  CAS  PubMed  Google Scholar 

  98. Tsai SJ, Wang YC, Yu Younger WY, Lin CH, Yang KH, Hong CJ . Association analysis of polymorphism in the promoter region of the alpha2a-adrenoceptor gene with schizophrenia and clozapine response. Schizophr Res 2001; 49: 53–58.

    Article  CAS  PubMed  Google Scholar 

  99. De Luca V, Vincent JB, Muller DJ, Hwang R, Shinkai T, Volavka J et al. Identification of a naturally occurring 21 bp deletion in alpha 2c noradrenergic receptor gene and cognitive correlates to antipsychotic treatment. Pharmacol Res 2005; 51: 381–384.

    Article  CAS  PubMed  Google Scholar 

  100. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z . Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol 2005; 15: 143–151.

    Article  CAS  PubMed  Google Scholar 

  101. Scharfetter J, Chaudhry HR, Hornik K, Fuchs K, Sieghart W, Kasper S et al. Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakistani patients. Eur Neuropsychopharmacol 1998; 10: 17–20.

    Article  Google Scholar 

  102. Szekeres G, Keri S, Juhasz A, Rimanoczy A, Szendi I, Czimmer C et al. Role of dopamine D3 receptor (DRD3) and dopamine transporter (DAT) polymorphism in cognitive dysfunctions and therapeutic response to atypical antipsychotics in patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 124: 1–5.

    Article  Google Scholar 

  103. Joober R, Toulouse A, Benkelfat C, Lal S, Bloom D, Labelle A et al. DRD3 and DAT1 genes in schizophrenia: an association study. J Psychiatr Res 2000; 34: 285–291.

    Article  CAS  PubMed  Google Scholar 

  104. Staddon S, Arranz MJ, Mancama D, Mata I, Kerwin RW . Clinical applications of pharmacogenetics in psychiatry. Psychopharmacology (Berl) 2002; 162: 18–23.

    Article  CAS  Google Scholar 

  105. Cohen BM, Ennulat DJ, Centorrino F, Matthysse S, Konieczna H, Chu HM et al. Polymorphisms of the dopamine D-4 receptor and response to antipsychotic drugs. Psychopharmacology 1999; 141: 6–10.

    Article  CAS  PubMed  Google Scholar 

  106. Hwu HG, Hong C-J, Lee YL, Lee PC, Lee SFC . Dopamine D4 receptor gene polymorphisms and neuroleptic response in schizophrenia. Biol Psychiatry 1998; 44: 483–487.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao AL, Zhao JP, Zhang YH, Xue ZM, Chen JD, Chen XG . Dopamine D4 receptor gene exon III polymorphism and interindividual variation in response to clozapine. Int J Neurosci 2005; 115: 1539–1547.

    Article  CAS  PubMed  Google Scholar 

  108. Zalsman G, Frisch A, Lev-Ran S, Martin A, Michaelovsky E, Bensason D et al. DRD4 exon III polymorphism and response to risperidone in Israeli adolescents with schizophrenia: a pilot pharmacogenetic study. Eur Neuropsychopharmacol 2003; 13: 183–185.

    Article  CAS  PubMed  Google Scholar 

  109. Rietschel M, Naber D, Oberlander H, Holzbach R, Fimmers R, Eggermann K et al. Efficacy and side-effects of clozapine: testing for association with allelic variation in the dopamine D4 receptor gene. Neuropsychopharmacology 1996; 15: 491–496.

    Article  CAS  PubMed  Google Scholar 

  110. Kaiser R, Konneker M, Henneken M, Dettling M, Muller-Oerlinghausen B, Roots I et al. Dopamine D4 receptor 48-bp repeat polymorphisms: no association with response to antipsychotic treatment, but association with catatonic schizophrenia. Mol Psychiatry 2000; 5: 418–424.

    Article  CAS  PubMed  Google Scholar 

  111. Kim JY, Jung IK, Han C, Cho SH, Kim L, Kim SH et al. Antipsychotics and dopamine transporter gene polymorphisms in delirium patients. Psychiatry Clin Neurosci 2005; 59: 183–188.

    Article  CAS  PubMed  Google Scholar 

  112. Bishop JR, Ellingrod VL, Moline J, Miller D . Association between the polymorphic GRM3 gene and negative symptom improvement during olanzapine treatment. Schizophr Res 2005; 77: 253–260.

    Article  PubMed  Google Scholar 

  113. Hong CJ, Yu YW, Lin CH, Cheng CY, Tsai SJ . Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr Genet 2001; 11: 219–222.

    Article  CAS  PubMed  Google Scholar 

  114. Mancama D, Arranz MJ, Munro J, Osborne S, Makoff A, Collier D et al. Investigation of promoter variants of the histamine 1 and 2 receptors in schizophrenia and clozapine response. Neurosci Lett 2002; 333: 207–211.

    Article  CAS  PubMed  Google Scholar 

  115. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L . Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 2006; 163: 1826–1829.

    Article  PubMed  Google Scholar 

  116. Arranz MJ, Collier DA, Sodhi M, Ball D, Roberts G, Price J et al. Association between clozapine response and allelic variation in the 5-HT2A receptor gene. Lancet 1995; 346: 281–282.

    Article  CAS  PubMed  Google Scholar 

  117. Nothen MM, Rietschel M, Erdmann J, Oberlander H, Moller HJ, Nober D et al. Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet 1995; 346: 908–909.

    Article  CAS  PubMed  Google Scholar 

  118. Masellis M, Paterson AD, Badri F, Lieberman JA, Meltzer HY, Cavazzoni P et al. Genetic variation of 5-HT2A receptor and response to clozapine. Lancet 1995; 346: 1108.

    Article  CAS  PubMed  Google Scholar 

  119. Malhotra AK, Goldman D, Ozaki N, Breier A, Buchanan R, Pickar D . Lack of association between polymorphisms in the 5-HT2A receptor gene and the antipsychotic response to clozapine. Am J Psychiatry 1996; 153: 1092–1094.

    Article  CAS  PubMed  Google Scholar 

  120. Jonsson E, Nothen MM, Bunzel R, Propping P, Sedvall G . 5HT 2a receptor T102C polymorphism and schizophrenia. Lancet 1996; 347: 1831.

    CAS  PubMed  Google Scholar 

  121. Arranz MJ, Munro J, Sham P, Kirov G, Murray RM, Collier DA et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 1998; 32: 93–99.

    Article  CAS  PubMed  Google Scholar 

  122. Lin CH, Tsai SJ, Yu YW, Song HL, Tu PC, Sim CB et al. No evidence for association of serotonin-2A receptor variant (102T/C) with schizophrenia or clozapine response in a Chinese population. Neuroreport 1999; 10: 57–60.

    Article  CAS  PubMed  Google Scholar 

  123. Joober R, Benkelfat C, Brisebois K, Toulouse A, Turecki G, Lal S et al. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability. J Psychiatry Neuroscience 1999; 24: 141–146.

    CAS  Google Scholar 

  124. Yu YW, Tsai SJ, Yang KH, Lin CH, Chen MC, Hong CJ . Evidence for an association between polymorphism in the serotonin-2A receptor variant (102T/C) and increment of N100 amplitude in schizophrenics treated with clozapine. Neuropsychobiology 2001; 43: 79–82.

    Article  CAS  PubMed  Google Scholar 

  125. Lane HY, Chang YC, Chiu CC, Chen ML, Hsieh MH, Chang WH . Association of risperidone treatment response with a polymorphism in the 5-HT(2A) receptor gene. Am J Psychiatry 2002; 159: 1593–1595.

    Article  PubMed  Google Scholar 

  126. Arranz MJ, Munro J, Owen MJ, Spurlock J, Sham P, Zhao J et al. Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine. Mol Psychiatry 1998; 3: 61–66.

    Article  CAS  PubMed  Google Scholar 

  127. Hamdani N, Bonniere M, Ades J, Hamon M, Boni C, Gorwood P . Negative symptoms of schizophrenia could explain discrepant data on the association between the 5-HT2A receptor gene and response to antipsychotics. Neurosci Lett 2005; 377: 69–74.

    Article  CAS  PubMed  Google Scholar 

  128. Arranz MJ, Collier DA, Munro J, Sham P, Kirov G, Sodhi M et al. Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine. Neurosci Lett 1996; 217: 177–178.

    Article  CAS  PubMed  Google Scholar 

  129. Masellis M, Basile VS, Meltzer HY, Lieberman JA, Sevy S, Macciardi F et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 1998; 19: 123–132.

    Article  CAS  PubMed  Google Scholar 

  130. Sodhi M, Arranz MJ, Curtis D, Ball D, Sham P, Roberts G et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport 1995; 7: 169–172.

    Article  CAS  PubMed  Google Scholar 

  131. Rietschel M, Naber D, Fimmers R, Moeller HJ, Propping P, Noethen MM . Efficacy and side-effects of clozapine not associated with variation in the 5-HT2C receptor. Neuroreport 1999; 8: 1999–2003.

    Article  Google Scholar 

  132. Arranz MJ, Munro J, Birkett J, Bolonna AA, Mancama D, Sodhi M et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–1616.

    Article  CAS  PubMed  Google Scholar 

  133. Gutierrez B, Arranz MJ, Huezo-Diaz P, Dempster D, Matthiasson P, Travis M et al. Novel mutations in 5-HT3A and 5-HT3B receptor genes not associated with clozapine response. Schizophr Res 2002; 58: 93–97.

    Article  PubMed  Google Scholar 

  134. Birkett JT, Arranz MJ, Munro J, Osbourn S, Kerwin RW, Collier DA . Association analysis of the 5-HT5A gene in depression, psychosis and antipsychotic response. Neuroreport 2000; 11: 2017–2020.

    Article  CAS  PubMed  Google Scholar 

  135. Yu YWY, Tsai S-J, Lin C-H, Hsu C-P, Ynakg K-H, Hong C-J . Serotonin-6 receptor variant (C267 T) and clinical response to clozapine. Neuroreport 1999; 10: 1231–1233.

    Article  CAS  PubMed  Google Scholar 

  136. Masellis M, Basile VS, Meltzer HY, Lieberman JA, Sevy S, Goldman D et al. Lack of association between the T-C267 serotonin 5-HT6 receptor gene (HTR6) polymorphism and prediction of response to clozapine in schizophrenia. Schizophr Res 2001; 47: 49–58.

    Article  CAS  PubMed  Google Scholar 

  137. Lane HY, Lin CC, Huang CH, Chang YC, Hsu SK, Chang WH . Risperidone response and 5-HT6 receptor gene variance: genetic association analysis with adjustment for nongenetic confounders. Schizophr Res 2004; 67: 63–70.

    Article  PubMed  Google Scholar 

  138. Tsai SJ, Hong CJ, Yu YW, Lin CH, Song HL, Lai HC et al. Association study of a functional serotonin transporter gene polymorphism with schizophrenia, psychopathology and clozapine response. Schizophr Res 2000; 44: 177–181.

    Article  CAS  PubMed  Google Scholar 

  139. Arranz MJ, Bolonna AA, Munro J, Curtis CJ, Collier DA, Kerwin RW . The serotonin transporter and clozapine response. Mol Psychiatry 2000; 5: 124–130.

    Article  CAS  PubMed  Google Scholar 

  140. Kaiser R, Tremblay PB, Schmider J, Henneken M, Dettling M, Muller-Oerlinghausen B et al. Serotonin transporter polymorphisms: no association with response to antipsychotic treatment, but associations with the schizoparanoid and residual subtypes of schizophrenia. Mol Psychiatry 2001; 6: 179–185.

    Article  CAS  PubMed  Google Scholar 

  141. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimaki T, Leinonen E . Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm 2005; 112: 885–890.

    Article  CAS  PubMed  Google Scholar 

  142. Krebs MO, Guillin O, Bourdel MC, Schwartz JC, Olie JP, Poirier MF et al. Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000; 5: 558–562.

    Article  CAS  PubMed  Google Scholar 

  143. Hong CJ, Yu YW, Lin CH, Tsai SJ . An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett 2003; 349: 206–208.

    Article  CAS  PubMed  Google Scholar 

  144. Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF et al. Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 2004; 56: 677–682.

    Article  CAS  PubMed  Google Scholar 

  145. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimaki T, Leinonen E . Interaction between NOTCH4 and catechol-O-methyltransferase genotypes in schizophrenia patients with poor response to typical neuroleptics. Pharmacogenetics 2004; 14: 303–307.

    Article  CAS  PubMed  Google Scholar 

  146. Woodward ND, Jayathilake K, Meltzer HY . COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007; 90: 86–96.

    Article  PubMed  Google Scholar 

  147. Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V et al. Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 2004; 161: 1798–1805.

    Article  PubMed  Google Scholar 

  148. Muller DJ, De Luca V, Sicard T, King N, Hwang R, Volavka J et al. Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. Eur Neuropsychopharmacol 2005; 15: 525–531.

    Article  CAS  PubMed  Google Scholar 

  149. Takao T, Tachikawa H, Kawanishi Y, Katano T, Sen B, Homma M et al. Association of treatment-resistant schizophrenia with the G2677A/T and C3435T polymorphisms in the ATP-binding cassette subfamily B member 1 gene. Psychiatr Genet 2006; 16: 47–48.

    Article  PubMed  Google Scholar 

  150. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L . Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res 2006 (in press).

  151. Yasui-Furukori N, Saito M, Nakagami T, Kaneda A, Tateishi T, Kaneko S . Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 286–291.

    Article  CAS  PubMed  Google Scholar 

  152. Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P et al. Association between the methylenetetrahydrofolate reductase 677C/T missense mutation and schizophrenia. Mol Psychiatry 2000; 5: 323–326.

    Article  CAS  PubMed  Google Scholar 

  153. Strous RD, Greenbaum L, Kanyas K, Merbl Y, Horowitz A, Karni O et al. Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol 2006; 10: 331–333.

    Google Scholar 

  154. Kampman O, Anttila S, Illi A, Saarela M, Rontu R, Mattila K et al. Neuregulin genotype and medication response in Finnish patients with schizophrenia. Neuroreport 2004; 15: 2517–2520.

    Article  CAS  PubMed  Google Scholar 

  155. Huezo-Diaz P, Arranz MJ, Munro J, Osborne S, Makoff A, Kerwin RW et al. An association study of the neurotensin receptor gene with schizophrenia and clozapine response. Schizophr Res 2004; 66: 193–195.

    Article  CAS  PubMed  Google Scholar 

  156. Kampman O, Illi A, Hanninen K, Katila H, Anttila S, Rontu R et al. RGS4 genotype is not associated with antipsychotic medication response in schizophrenia. J Neural Transm 2006; 113: 1563–1568.

    Article  CAS  PubMed  Google Scholar 

  157. Tsai SJ, Hong CJ, Yu YW, Lin CH, Liu LL . No association of tumor necrosis factor alpha gene polymorphisms with schizophrenia or response to clozapine. Schizophr Res 2003; 65: 27–32.

    Article  PubMed  Google Scholar 

  158. Zai G, Muller DJ, Volavka J, Czobor P, Lieberman JA, Meltzer HY et al. Family and case-control association study of the tumor necrosis factor-alpha (TNF-alpha) gene with schizophrenia and response to antipsychotic medication. Psychopharmacology (Berl) 2006; 188: 171–182.

    Article  CAS  Google Scholar 

  159. Arinami T, Gao M, Hamaguchi H, Toru M . A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–582.

    Article  CAS  PubMed  Google Scholar 

  160. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 1999; 4: 290–296.

    Article  CAS  PubMed  Google Scholar 

  161. Lundstrom K, Turpin MP . Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun 1996; 225: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  162. Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–614.

    Article  CAS  PubMed  Google Scholar 

  163. Stein MA, Waldman ID, Sarampote CS, Seymour KE, Robb AS, Conlon C et al. Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 2005; 30: 1374–1382.

    Article  CAS  PubMed  Google Scholar 

  164. Kirley A, Lowe N, Hawi Z, Mullins C, Daly G, Waldman I et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 2003; 121: 50–54.

    Article  Google Scholar 

  165. Hernandez I, Sokolov BP . Abnormal expression of serotonin transporter mRNA in the frontal and temporal cortex of schizophrenics. Mol Psychiatry 1997; 2: 57–64.

    Article  CAS  PubMed  Google Scholar 

  166. Meltzer HY . The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 1999; 21: s106–s115.

    Article  Google Scholar 

  167. Meltzer HY, Li Z, Kaneda Y, Ichikawa J . Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1159–1172.

    Article  CAS  PubMed  Google Scholar 

  168. Thase ME, Sachs GS . Bipolar depression: pharmacotherapy and related therapeutic strategies. Biol Psychiatry 2000; 48: 558–572.

    Article  CAS  PubMed  Google Scholar 

  169. Meltzer HY, Gudelsky GA . Dopaminergic and serotonergic effects of clozapine. Implications for a unique clinical profile. Arzneimittelforschung 1992; 42: 268–272.

    CAS  PubMed  Google Scholar 

  170. Travis MJ, Busatto GF, Pilowsky LS, Mulligan R, Acton PD, Gacinovic S et al. 5-HT2A receptor blockade in patients with schizophrenia treated with risperidone or clozapine. A SPET study using the novel 5-HT2A ligand 123I-5-I-R-91150. Br J Psychiatry 1998; 173: 236–241.

    Article  CAS  PubMed  Google Scholar 

  171. Parsons MJ, D’Souza UM, Arranz MJ, Kerwin RW, Makoff AJ . The −1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 2004; 56: 406–410.

    Article  CAS  PubMed  Google Scholar 

  172. Myers RL, Airey DC, Manier DH, Shelton RC, Sanders-Bush E . Polymorphisms in the regulatory region of the human serotonin 5-HT(2A) receptor gene (HTR2A) influence gene expression. Biol Psychiatry 2007; 61: 167–173.

    Article  CAS  PubMed  Google Scholar 

  173. Reist C, Mazzanti C, Vu R, Fujimoto K, Goldman D . Inter-relationships of intermediate phenotypes for serotonin function, impulsivity, and a 5-HT2A candidate allele: His452Tyr. Mol Psychiatry 2004; 9: 871–878.

    Article  CAS  PubMed  Google Scholar 

  174. Hazelwood LA, Sanders-Bush E . His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 2004; 66: 1293–1300.

    CAS  PubMed  Google Scholar 

  175. Serretti A, Lilli R, Lorenzi C, Lattuada E, Cusin C, Smeraldi E . Serotonin transporter gene (5-HTTLPR) and major psychoses. Mol Psychiatry 2002; 7: 95–99.

    Article  CAS  PubMed  Google Scholar 

  176. Serretti A, De Ronchi D, Lorenzi C, Berardi D . New antipsychotics and schizophrenia: a review on efficacy and side effects. Curr Med Chem 2004; 11: 343–358.

    Article  CAS  PubMed  Google Scholar 

  177. Meador-Woodruff JH, Healy DJ . Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 288–294.

    Article  CAS  PubMed  Google Scholar 

  178. Laruelle M, Frankle WG, Narendran R, Kegeles LS, Abi-Dargham A . Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation. Clin Ther 2005; 27 (Suppl A): S16–S24.

    Article  CAS  PubMed  Google Scholar 

  179. Tamminga CA . Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36.

    Article  CAS  PubMed  Google Scholar 

  180. Coyle JT . The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 2004; 68: 1507–1514.

    Article  CAS  PubMed  Google Scholar 

  181. Krebs MO . Glutamatergic hypothesis of schizophrenia: psychoses induced by phencyclidine and cortical-subcortical imbalance. Encephale 1995; 21: 581–588.

    CAS  PubMed  Google Scholar 

  182. van Elst LT, Valerius G, Buchert M, Thiel T, Rusch N, Bubl E et al. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol Psychiatry 2005; 58: 724–730.

    Article  CAS  PubMed  Google Scholar 

  183. Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH . Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr Res 2005; 75: 27–34.

    Article  PubMed  Google Scholar 

  184. Chen AC, McDonald B, Moss SJ, Gurling HM . Gene expression studies of mRNAs encoding the NMDA receptor subunits NMDAR1, NMDAR2A, NMDAR2B, NMDAR2C, and NMDAR2D following long-term treatment with cis-and trans-flupenthixol as a model for understanding the mode of action of schizophrenia drug treatment. Brain Res Mol Brain Res 1998; 54: 92–100.

    Article  PubMed  Google Scholar 

  185. Tarazi FI, Baldessarini RJ, Kula NS, Zhang K . Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: implications for antipsychotic drug treatment. J Pharmacol Exp Ther 2003; 306: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  186. Chiu HJ, Wang YC, Liou YJ, Lai IC, Chen JY . Association analysis of the genetic variants of the N-methyl D-aspartate receptor subunit 2b (NR2b) and treatment-refractory schizophrenia in the Chinese. Neuropsychobiology 2003; 47: 178–181.

    Article  PubMed  Google Scholar 

  187. Davies MA, Compton-Toth BA, Hufeisen SJ, Meltzer HY, Roth BL . The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions? Psychopharmacology (Berl) 2005; 178: 451–460.

    Article  CAS  Google Scholar 

  188. Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology (Berl) 2004; 177: 207–216.

    Article  CAS  Google Scholar 

  189. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  190. Chen ML, Chen CH . Chronic antipsychotics treatment regulates MAOA, MAOB and COMT gene expression in rat frontal cortex. J Psychiatr Res 2007; 41: 57–62.

    Article  PubMed  Google Scholar 

  191. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  193. Skarke C, Kirchhof A, Geisslinger G, Lotsch J . Rapid genotyping for relevant CYP1A2 alleles by pyrosequencing. Eur J Clin Pharmacol 2005; 61: 887–892.

    Article  CAS  PubMed  Google Scholar 

  194. James HM, Coller JK, Gillis D, Bahnisch J, Sallustio BC, Somogyi AA . A new simple diagnostic assay for the identification of the major CYP2D6 genotypes by DNA sequencing analysis. Int J Clin Pharmacol Ther 2004; 42: 719–723.

    Article  CAS  PubMed  Google Scholar 

  195. Aquilante CL, Lobmeyer MT, Langaee TY, Johnson JA . Comparison of cytochrome P450 2C9 genotyping methods and implications for the clinical laboratory. Pharmacotherapy 2004; 24: 720–726.

    Article  CAS  PubMed  Google Scholar 

  196. Roses AD . Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004; 5: 645–656.

    Article  CAS  PubMed  Google Scholar 

  197. Kaplan A . Advances in pharmacogenomics reduce side effects and save lives. Psychiatric Times 2005; XXII.

  198. Bertilsson L, Dahl ML . Polymorphic drug oxidation – relevance to the treatment of psychiatric disorders. CNS Drugs 1996; 5: 220–223.

    Article  Google Scholar 

  199. Sodhi M, Sham P, Makoff A, Collier DA, Arranz MJ, Munro J et al. Replication and meta-analysis of allelic association of a 5-HT2C receptor polymorphism with good response to clozapine. Mol Psychiatry 1999; 4: 225–226.

    Google Scholar 

  200. Schumacher J, Schulze TG, Wienker TF, Rietschel M, Nothen MM . Pharmacogenetics of the clozapine response. Lancet 2000; 356: 506–507.

    Article  CAS  PubMed  Google Scholar 

  201. Justice AC, Covinsky KE, Berlin JA . Assessing the generalizability of prognostic information. Ann Intern Med 1999; 130: 515–524.

    Article  CAS  PubMed  Google Scholar 

  202. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liou YJ, Liao DL, Chen JY, Wang YC, Lin CC, Bai YM et al. Association analysis of the dopamine D3 receptor gene ser9gly and brain-derived neurotrophic factor gene val66met polymorphisms with antipsychotic-induced persistent tardive dyskinesia and clinical expression in Chinese schizophrenic patients. Neuromolecular Med 2004; 5: 243–251.

    Article  CAS  PubMed  Google Scholar 

  204. Srivastava V, Varma PG, Prasad S, Semwal P, Nimgaonkar VL, Lerer B et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics 2006; 16: 111–117.

    Article  CAS  PubMed  Google Scholar 

  205. Herken H, Erdal ME, Boke O, Savas HA . Tardive dyskinesia is not associated with the polymorphisms of 5-HT2A receptor gene, serotonin transporter gene and catechol-o-methyltransferase gene. Eur Psychiatry 2003; 18: 77–81.

    Article  PubMed  Google Scholar 

  206. Lai IC, Wang YC, Lin CC, Bai YM, Liao DL, Yu SC et al. Negative association between catechol-O-methyltransferase (COMT) gene Val158Met polymorphism and persistent tardive dyskinesia in schizophrenia. J Neural Transm 2005; 112: 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  207. Matsumoto C, Shinkai T, Hori H, Ohmori O, Nakamura J . Polymorphisms of dopamine degradation enzyme (COMT and MAO) genes and tardive dyskinesia in patients with schizophrenia. Psychiatry Res 2004; 127: 1–7.

    Article  CAS  PubMed  Google Scholar 

  208. Basile VS, Ozdemir V, Masellis M, Walker ML, Meltzer HY, Lieberman JA et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 2000; 5: 410–417.

    Article  CAS  PubMed  Google Scholar 

  209. Schulze TG, Schumacher J, Muller DJ, Krauss H, Alfter D, Maroldt A et al. Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 498–501.

    Article  CAS  PubMed  Google Scholar 

  210. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: I. Association of CYP1A2 gene polymorphism. Pharmacogenomics J 2005; 5: 60–69.

    Article  CAS  PubMed  Google Scholar 

  211. Fu Y, Fan CH, Deng HH, Hu SH, Lv DP, Li LH et al. Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients. Acta Pharmacol Sin 2006; 27: 328–332.

    Article  CAS  PubMed  Google Scholar 

  212. Matsumoto C, Ohmori O, Shinkai T, Hori H, Nakamura J . Genetic association analysis of functional polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene with tardive dyskinesia in Japanese patients with schizophrenia. Psychiatr Genet 2004; 14: 209–213.

    Article  PubMed  Google Scholar 

  213. Schillevoort I, de Boer A, van der WJ, Steijns LS, Roos RA, Jansen PA et al. Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a case–control study. Pharmacogenetics 2002; 12: 235–240.

    Article  CAS  PubMed  Google Scholar 

  214. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr Res 2005; 75: 21–26.

    Article  PubMed  Google Scholar 

  215. Liou YJ, Wang YC, Bai YM, Lin CC, Yu SC, Liao DL et al. Cytochrome P-450 2D6*10 C188 T polymorphism is associated with antipsychotic-induced persistent tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology 2004; 49: 167–173.

    Article  CAS  PubMed  Google Scholar 

  216. Roh HK, Kim CE, Chung WG, Park CS, Svensson JO, Bertilsson L . Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–675.

    Article  CAS  PubMed  Google Scholar 

  217. Brockmoller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Muller-Oerlinghausen B et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–452.

    Article  CAS  PubMed  Google Scholar 

  218. Scordo MG, Spina E, Romeo P, Dahl ML, Bertilsson L, Johansson I et al. CYP2D6 genotype and antipsychotic-induced extrapyramidal side effects in schizophrenic patients. Eur J Clin Pharmacol 2000; 56: 679–683.

    Article  CAS  PubMed  Google Scholar 

  219. Lohmann PL, Bagli M, Krauss H, Muller DJ, Schulze TG, Fangerau H et al. CYP2D6 polymorphism and tardive dyskinesia in schizophrenic patients. Pharmacopsychiatry 2003; 36: 73–78.

    Article  CAS  PubMed  Google Scholar 

  220. Inada T, Senoo H, Iijima Y, Yamauchi T, Yagi G . Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients. Psychiatr Genet 2003; 13: 163–168.

    Article  PubMed  Google Scholar 

  221. de Leon J, Susce MT, Pan RM, Koch WH, Wedlund PJ . Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J Clin Psychopharmacol 2005; 25: 448–456.

    Article  CAS  PubMed  Google Scholar 

  222. Segman RH, Heresco-Levy U, Yakir A, Goltser T, Strous R, Greenberg DA et al. Interactive effect of cytochrome P450 17alpha-hydroxylase and dopamine D3 receptor gene polymorphisms on abnormal involuntary movements in chronic schizophrenia. Biol Psychiatry 2002; 51: 261–263.

    Article  CAS  PubMed  Google Scholar 

  223. Mihara K, Suzuki A, Kondo T, Nagashima U, Ono S, Otani K et al. No relationship between Taq1 a polymorphism of dopamine D(2) receptor gene and extrapyramidal adverse effects of selective dopamine D(2) antagonists, bromperidol, and nemonapride in schizophrenia: a preliminary study. Am J Med Genet 2000; 96: 422–424.

    Article  CAS  PubMed  Google Scholar 

  224. Lattuada E, Cavallaro R, Serretti A, Lorenzi C, Smeraldi E . Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. Int J Neuropsychopharmacol 2004; 7: 489–493.

    Article  CAS  PubMed  Google Scholar 

  225. Mihara K, Kondo T, Suzuki A, Yasui N, Ono S, Otani K et al. No relationship between −141C Ins/Del polymorphism in the promoter region of dopamine D2 receptor and extrapyramidal adverse effects of selective dopamine D2 antagonists in schizophrenic patients: a preliminary study. Psychiatry Res 2001; 101: 33–38.

    Article  CAS  PubMed  Google Scholar 

  226. Chong SA, Tan EC, Tan CH, Mythily S, Chan YH . Polymorphisms of dopamine receptors and tardive dyskinesia among Chinese patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 51–54.

    Article  Google Scholar 

  227. Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J . Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 774–778.

    Article  CAS  PubMed  Google Scholar 

  228. Kaiser R, Tremblay PB, Klufmoller F, Roots I, Brockmoller J . Relationship between adverse effects of antipsychotic treatment and dopamine D-2 receptor polymorphisms in patients with schizophrenia. Mol Psychiatry 2002; 7: 695–705.

    Article  CAS  PubMed  Google Scholar 

  229. Liou YJ, Lai IC, Liao DL, Chen JY, Lin CC, Lin CY et al. The human dopamine receptor D2 (DRD2) gene is associated with tardive dyskinesia in patients with schizophrenia. Schizophr Res 2006; 86: 323–325.

    Article  PubMed  Google Scholar 

  230. Steen VM, Lovlie R, MacEwan T, McCreadie RG . Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 1997; 2: 139–145.

    Article  CAS  PubMed  Google Scholar 

  231. Segman R, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–253.

    Article  CAS  PubMed  Google Scholar 

  232. Lovlie R, Daly AK, Blennerhassett R, Ferrier N, Steen VM . Homozygosity for the Gly-9 variant of the dopamine D3 receptor and risk for tardive dyskinesia in schizophrenic patients. Int J Neuropsychopharmacol 2000; 3: 61–65.

    Article  CAS  PubMed  Google Scholar 

  233. Rietschel M, Krauss H, Muller DJ, Schulze TG, Knapp M, Marwinski K et al. Dopamine D3 receptor variant and tardive dyskinesia. Eur Arch Psychiatry Clin Neurosci 2000; 250: 31–35.

    Article  CAS  PubMed  Google Scholar 

  234. Garcia-Barcelo MM, Lam LC, Ungvari GS, Lam VK, Tang WK . Dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. J Neural Transm 2001; 108: 671–677.

    Article  CAS  PubMed  Google Scholar 

  235. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R et al. Pharmacogenetics of tardive dyskinesia. Combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002; 27: 105–119.

    Article  CAS  PubMed  Google Scholar 

  236. Liao DL, Yeh YC, Chen HM, Chen H, Hong CJ, Tsai SJ . Association between the Ser9Gly polymorphism of the dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology 2001; 44: 95–98.

    Article  CAS  PubMed  Google Scholar 

  237. Woo SI, Kim JW, Rha E, Han SH, Hahn KH, Park CS et al. Association of the Ser9Gly polymorphism in the dopamine D3 receptor gene with tardive dyskinesia in Korean schizophrenics. Psychiatry Clin Neurosci 2002; 56: 469–474.

    Article  CAS  PubMed  Google Scholar 

  238. Bakker PR, van Harten PN, Van Os J . Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 2006; 83: 185–192.

    Article  PubMed  Google Scholar 

  239. Eichhammer P, Albus M, Borrmann-Hassenbach M, Schoeler A, Putzhammer A, Frick U et al. Association of dopamine D3-receptor gene variants with neuroleptic induced akathisia in schizophrenic patients: a generalization of Steen's study on DRD3 and tardive dyskinesia. Am J Med Genet 2000; 96: 187–191.

    Article  CAS  PubMed  Google Scholar 

  240. Mihara K, Kondo T, Higuchi H, Takahashi H, Yoshida K, Shimizu T et al. Tardive dystonia and genetic polymorphisms of cytochrome P4502D6 and dopamine D2 and D3 receptors: a preliminary finding. Am J Med Genet 2002; 114: 693–695.

    Article  PubMed  Google Scholar 

  241. Shinkai T, De Luca V, Hwang R, Matsumoto C, Hori H, Ohmori O et al. Association study between a functional glutathione S-transferase (GSTP1) gene polymorphism (Ile105Val) and tardive dyskinesia. Neurosci Lett 2005; 388: 116–120.

    Article  CAS  PubMed  Google Scholar 

  242. Shinkai T, Muller DJ, De Luca V, Shaikh S, Matsumoto C, Hwang R et al. Genetic association analysis of the glutathione peroxidase (GPX1) gene polymorphism (Pro197Leu) with tardive dyskinesia. Psychiatry Res 2006; 141: 123–128.

    Article  CAS  PubMed  Google Scholar 

  243. Tan EC, Chong SA, Mahendran R, Dong F, Tan CH . Susceptibility to neuroleptic-induced tardive dyskinesia and the T102C polymorphism in the serotonin type 2A receptor. Biol Psychiatry 2001; 50: 144–147.

    Article  CAS  PubMed  Google Scholar 

  244. Segman RH, Heresco-Levy U, Finkel B, Goltser T, Shalem R, Schlafman M et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 2001; 6: 225–229.

    Article  CAS  PubMed  Google Scholar 

  245. Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 2005; 8: 411–425.

    Article  CAS  PubMed  Google Scholar 

  246. Deshpande SN, Varma PG, Semwal P, Rao AR, Bhatia T, Nimgaonkar VL et al. II. Serotonin receptor gene polymorphisms and their association with tardive dyskinesia among schizophrenia patients from North India. Psychiatr Genet 2005; 15: 157–158.

    Article  PubMed  Google Scholar 

  247. Basile VS, Ozdemir V, Masellis M, Meltzer HY, Lieberman JA, Potkin SG et al. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia. Mol Psychiatry 2001; 6: 230–234.

    Article  CAS  PubMed  Google Scholar 

  248. Zhang ZJ, Zhang XB, Sha WW, Zhang XB, Reynolds GP . Association of a polymorphism in the promoter region of the serotonin 5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry 2002; 7: 670–671.

    Article  CAS  PubMed  Google Scholar 

  249. Segman RH, Heresco-Levy U, Finkel B, Inbar R, Neeman T, Schlafman M et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl) 2000; 152: 408–413.

    Article  CAS  Google Scholar 

  250. Segman RH, Lerer B . Age and the relationship of dopamine D3, serotonin 2C and serotonin 2A receptor genes to abnormal involuntary movements in chronic schizophrenia. Mol Psychiatry 2002; 7: 137–139.

    Article  CAS  PubMed  Google Scholar 

  251. Ohmori O, Shinkai T, Hori H, Nakamura J . Genetic association analysis of 5-HT(6) receptor gene polymorphism (267C/T) with tardive dyskinesia. Psychiatry Res 2002; 110: 97–102.

    Article  CAS  PubMed  Google Scholar 

  252. Chong SA, Tan EC, Tan CH, Mahendren R, Tay AH, Chua HC . Tardive dyskinesia is not associated with the serotonin gene polymorphism (5-HTTLPR) in Chinese. Am J Med Genet 2000; 96: 712–715.

    Article  CAS  PubMed  Google Scholar 

  253. Zhang Z, Zhang X, Hou G, Sha W, Reynolds GP . The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J Psychiatr Res 2002; 36: 317–324.

    Article  PubMed  Google Scholar 

  254. Wang YC, Liou YJ, Liao DL, Bai YM, Lin CC, Yu SC et al. Association analysis of a neural nitric oxide synthase gene polymorphism and antipsychotics-induced tardive dyskinesia in Chinese schizophrenic patients. J Neural Transm 2004; 111: 623–629.

    Article  CAS  PubMed  Google Scholar 

  255. Shinkai T, Ohmori O, Matsumoto C, Hori H, Kennedy JL, Nakamura J . Genetic association analysis of neuronal nitric oxide synthase gene polymorphism with tardive dyskinesia. Neuromolecular Med 2004; 5: 163–170.

    Article  CAS  PubMed  Google Scholar 

  256. Liou YJ, Lai IC, Lin MW, Bai YM, Lin CC, Liao DL et al. Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics 2006; 16: 151–157.

    Article  CAS  PubMed  Google Scholar 

  257. Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Jun TY et al. Quinone oxidoreductase (NQO1) gene polymorphism (609C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int J Neuropsychopharmacol 2004; 7: 495–500.

    Article  CAS  PubMed  Google Scholar 

  258. Liou YJ, Wang YC, Lin CC, Bai YM, Lai IC, Liao DL et al. Association analysis of NAD(P)Hratioquinone oxidoreductase (NQO1) Pro187Ser genetic polymorphism and tardive dyskinesia in patients with schizophrenia in Taiwan. Int J Neuropsychopharmacol 2005; 8: 483–486.

    Article  CAS  PubMed  Google Scholar 

  259. Richardson MA, Chao HM, Read LL, Clelland JD, Suckow RF . Investigation of the phenylalanine hydroxylase gene and tardive dyskinesia. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 195–197.

    Article  Google Scholar 

  260. Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ . Polymorphism of the adrenergic receptor alpha 2a −1291C>G genetic variation and clozapine-induced weight gain. J Neural Transm 2005; 112: 1463–1468.

    Article  CAS  PubMed  Google Scholar 

  261. Park YM, Chung YC, Lee SH, Lee KJ, Kim H, Byun YC et al. Weight gain associated with the alpha2a-adrenergic receptor −1,291 C/G polymorphism and olanzapine treatment. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 394–397.

    Article  CAS  Google Scholar 

  262. Tsai SJ, Yu YW, Lin CH, Wang YC, Chen JY, Hong CJ . Association study of adrenergic beta3 receptor (Trp64Arg) and G-protein beta3 subunit gene (C825T) polymorphisms and weight change during clozapine treatment. Neuropsychobiology 2004; 50: 37–40.

    Article  CAS  PubMed  Google Scholar 

  263. Ellingrod VL, Miller D, Schultz SK, Wehring H, Arndt S . CYP2D6 polymorphisms and atypical antipsychotic weight gain. Psychiatr Genet 2002; 12: 55–58.

    Article  PubMed  Google Scholar 

  264. Zhang ZJ, Yao ZJ, Zhang XB, Chen JF, Sun J, Yao H et al. No association of antipsychotic agent-induced weight gain with a DA receptor gene polymorphism and therapeutic response. Acta Pharmacol Sin 2003; 24: 235–240.

    CAS  PubMed  Google Scholar 

  265. Wang YC, Bai YM, Chen JY, Lin CC, Lai IC, Liou YJ . C825T polymorphism in the human G protein beta3 subunit gene is associated with long-term clozapine treatment-induced body weight change in the Chinese population. Pharmacogenet Genomics 2005; 15: 743–748.

    Article  CAS  PubMed  Google Scholar 

  266. Bishop JR, Ellingrod VL, Moline J, Miller D . Pilot study of the G-protein beta3 subunit gene (C825T) polymorphism and clinical response to olanzapine or olanzapine-related weight gain in persons with schizophrenia. Med Sci Monit 2006; 12: BR47–BR50.

    CAS  PubMed  Google Scholar 

  267. Hong CJ, Lin CH, Yu YW, Yang KH, Tsai SJ . Genetic variants of the serotonin system and weight change during clozapine treatment. Pharmacogenetics 2001; 11: 265–268.

    Article  CAS  PubMed  Google Scholar 

  268. Reynolds GP, Zhang ZJ, Zhang XB . Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002; 359: 2086–2087.

    Article  CAS  PubMed  Google Scholar 

  269. Tsai SJ, Hong CJ, Yu YW, Lin CH . 759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet 2002; 360: 1790.

    Article  PubMed  Google Scholar 

  270. Basile VS, Masellis M, De LV, Meltzer HY, Kennedy JL . 759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet 2002; 360: 1790–1791.

    Article  PubMed  Google Scholar 

  271. Reynolds GP, Zhang Z, Zhang X . Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003; 160: 677–679.

    Article  PubMed  Google Scholar 

  272. Miller DD, Ellingrod VL, Holman TL, Buckley PF, Ardnt S . Clozapine-induced weight gain associated with the 5-HT2C receptor −759-C/T polymorphism. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 97–100.

    Article  PubMed  Google Scholar 

  273. Templeman LA, Reynolds GP, Arranz B, San L . Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics 2005; 15: 195–200.

    Article  CAS  PubMed  Google Scholar 

  274. Ellingrod VL, Perry PJ, Ringold JC, Lund BC, Bever-Stille K, Fleming F et al. Weight gain associated with the −759C/T polymorphism of the 5HT2C receptor and olanzapine. Am J Med Genet B Neuropsychiatr Genet 2005; 134: 76–78.

    Article  Google Scholar 

  275. Muller DJ, Klempan TA, De Luca V, Sicard T, Volavka J, Czobor P et al. The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci Lett 2005; 379: 81–89.

    Article  CAS  PubMed  Google Scholar 

  276. Basile VS, Masellis M, McIntyre RS, Meltzer HY, Lieberman JA, Kennedy JL . Genetic dissection of atypical antipsychotic-induced weight gain: novel preliminary data on the pharmacogenetic puzzle. J Clin Psychiatry 2001; 62 (Suppl 23): 45–66.

    CAS  PubMed  Google Scholar 

  277. Suzuki A, Kondo T, Otani K, Mihara K, Yasui-Furukori N, Sano A et al. Association of the TaqI A polymorphism of the dopamine D(2) receptor gene with predisposition to neuroleptic malignant syndrome. Am J Psychiatry 2001; 158: 1714–1716.

    Article  CAS  PubMed  Google Scholar 

  278. Mihara K, Kondo T, Suzuki A, Yasui-Furukori N, Ono S, Sano A et al. Relationship between functional dopamine D2 and D3 receptors gene polymorphisms and neuroleptic malignant syndrome. Am J Med Genet 2003; 117B: 57–60.

    Article  PubMed  Google Scholar 

  279. Kishida I, Kawanishi C, Furuno T, Matsumura T, Hasegawa H, Sugiyama N et al. Lack of association in Japanese patients between neuroleptic malignant syndrome and the TaqI A polymorphism of the dopamine D2 receptor gene. Psychiatr Genet 2003; 13: 55–57.

    Article  PubMed  Google Scholar 

  280. Kishida I, Kawanishi C, Furuno T, Kato D, Ishigami T, Kosaka K . Association in Japanese patients between neuroleptic malignant syndrome and functional polymorphisms of the dopamine D(2) receptor gene. Mol Psychiatry 2004; 9: 293–298.

    Article  CAS  PubMed  Google Scholar 

  281. Mosyagin I, Dettling M, Roots I, Mueller-Oerlinghausen B, Cascorbi I . Impact of myeloperoxidase and NADPH-oxidase polymorphisms in drug-induced agranulocytosis. J Clin Psychopharmacol 2004; 24: 613–617.

    Article  CAS  PubMed  Google Scholar 

  282. Dettling M, Sachse C, Muller-Oerlinghausen B, Roots I, Brockmoller J, Rolfs A et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry 2000; 33: 218–220.

    Article  CAS  PubMed  Google Scholar 

  283. Amar A, Segman RH, Shtrussberg S, Sherman L, Safirman C, Lerer B et al. An association between clozapine-induced agranulocytosis in schizophrenics and HLA-DQB1*0201. Int J Neuropsychopharmacol 1998; 1: 41–44.

    Article  CAS  PubMed  Google Scholar 

  284. Valevski A, Klein T, Gazit E, Meged S, Stein D, Elizur A et al. HLA-B38 and clozapine-induced agranulotycosis in Israeli Jewish schizophrenic patients. Eur J Immunogenet 1998; 25: 11–13.

    Article  CAS  PubMed  Google Scholar 

  285. Dettling M, Cascorbi I . Genetic determinants of clozapine-induced agranulocytosis: recent results of HLA subtyping in a non-Jewish Caucasian sample. Arch Gen Psychiatry 2001; 58: 93–94.

    Article  CAS  PubMed  Google Scholar 

  286. Ostrousky O, Meged S, Loewenthal R, Valevski A, Weizman A, Carp H et al. NQO2 gene is associated jwith clozapine-induced agranulocytosis. Tissue Antigens 2003; 62: 483–491.

    Article  CAS  PubMed  Google Scholar 

  287. Turbay D, Lieberman J, Alper CA, Delgado JC, Corzo D, Yunis JJ et al. Tumor necrosis factor constellation polymorphism and clozapin-induced agranulocytosis in two different ethnic groups. Blood 1997; 89: 4167–4174.

    CAS  PubMed  Google Scholar 

  288. Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996; 93: 1945–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Casey DE . Implications of the CATIE trial on treatment: extrapyramidal symptoms. CNS Spectr 2006; 11: 25–31.

    Article  PubMed  Google Scholar 

  290. Rietschel M, Naber D, Fimmers R, Moller HJ, Propping P, Nothen MM . Efficacy and side-effects of clozapine not associated with variation in the 5-HT2C receptor. Neuroreport 1997; 8: 1999–2003.

    Article  CAS  PubMed  Google Scholar 

  291. Arthur H, Dahl ML, Siwers B, Sjoqvist F . Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol 1995; 15: 211–216.

    Article  CAS  PubMed  Google Scholar 

  292. Basile VS, Masellis M, Potkin SG, Kennedy JL . Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum Mol Genet 2002; 11: 2517–2530.

    Article  CAS  PubMed  Google Scholar 

  293. Buckland PR, Hoogendoorn B, Guy CA, Smith SK, Coleman SL, O’donovan MC . Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. Am J Psychiatry 2005; 162: 613–615.

    Article  PubMed  Google Scholar 

  294. Theisen FM, Hinney A, Bromel T, Heinzel-Gutenbrunner M, Martin M, Krieg JC et al. Lack of association between the −759C/T polymorphism of the 5-HT2C receptor gene and clozapine-induced weight gain among German schizophrenic individuals. Psychiatr Genet 2004; 14: 139–142.

    Article  PubMed  Google Scholar 

  295. Reynolds GP, Zhang Z, Zhang X . Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003; 160: 677–679.

    Article  PubMed  Google Scholar 

  296. Reynolds GP, Zhang Z, Zhang X . Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003; 160: 677–679.

    Article  PubMed  Google Scholar 

  297. Chagnon YC, Merette C, Bouchard RH, Emond C, Roy MA, Maziade M . A genome wide linkage study of obesity as secondary effect of antipsychotics in multigenerational families of eastern Quebec affected by psychoses. Mol Psychiatry 2004; 9: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  298. Basile V, Masellis M, Ozdemir V, Quiterio S, Meltzer HY, Lieberman J et al. Novel histamin H1 gene polymorphism and clozapine-induced weight gain. Am J Med Genet 2001; 96: 539.

    Google Scholar 

  299. Neville MJ, Johnstone EC, Walton RT . Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 2004; 23: 540–545.

    Article  CAS  PubMed  Google Scholar 

  300. Jauss M, Krack P, Franz M, Klett R, Bauer R, Gallhofer B et al. Imaging of dopamine receptors with [123I]iodobenzamide single-photon emission-computed tomography in neuroleptic malignant syndrome. Mov Disord 1996; 11: 726–728.

    Article  CAS  PubMed  Google Scholar 

  301. Munro J, O’Sullivan D, Andrews C, Arana A, Mortimer A, Kerwin R . Active monitoring of 12 760 clozapine recipients in the UK and Ireland. Beyond pharmacovigilance. Br J Psychiatry 1999; 175: 576–580.

    Article  CAS  PubMed  Google Scholar 

  302. Fehsel K, Loeffler S, Krieger K, Henning U, Agelink M, Kolb-Bachofen V et al. Clozapine induces oxidative stress and proapoptotic gene expression in neutrophils of schizophrenic patients. J Clin Psychopharmacol 2005; 25: 419–426.

    Article  CAS  PubMed  Google Scholar 

  303. Ananth J, Parameswaran S, Gunatilake S, Burgoyne K, Sidhom T . Neuroleptic malignant syndrome and atypical antipsychotic drugs. J Clin Psychiatry 2004; 65: 464–470.

    Article  CAS  PubMed  Google Scholar 

  304. Brown CS, Farmer RG, Soberman JE, Eichner SF . Pharmacokinetic factors in the adverse cardiovascular effects of antipsychotic drugs. Clin Pharmacokinet 2004; 43: 33–56.

    Article  CAS  PubMed  Google Scholar 

  305. Lane HY, Liu YC, Huang CL, Chang YC, Wu PL, Lu CT et al. Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 2006; 26: 128–134.

    Article  CAS  PubMed  Google Scholar 

  306. Lerer B, Segman RH . Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin Neurosci 2006; 8: 85–94.

    PubMed  PubMed Central  Google Scholar 

  307. Ozdemir V, Aklillu E, Mee S, Bertilsson L, Albers LJ, Graham JE et al. Pharmacogenetics for off-patent antipsychotics: reframing the risk for tardive dyskinesia and access to essential medicines. Expert Opin Pharmacother 2006; 7: 119–133.

    Article  CAS  PubMed  Google Scholar 

  308. Ruano G, Goethe JW, Caley C, Woolley S, Holford TR, Kocherla M et al. Physiogenomic comparison of weight profiles of olanzapine- and risperidone-treated patients. Mol Psychiatry 2007.

  309. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  310. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.

    Article  CAS  PubMed  Google Scholar 

  311. Goldstein DB . Haplotype mapping in pharmacogenetics. Am J Med Genet B Neuropsychiatr Genet 2004; 130B: 6.

    Google Scholar 

  312. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  CAS  Google Scholar 

  313. Nothnagel M, Rohde K . The effect of single-nucleotide polymorphism marker selection on patterns of haplotype blocks and haplotype frequency estimates. Am J Hum Genet 2005; 77: 988–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Deloukas P, Bentley D . The HapMap project and its application to genetic studies of drug response. Pharmacogenomics J 2004; 4: 88–90.

    Article  CAS  PubMed  Google Scholar 

  315. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005; 352: 2285–2293.

    Article  CAS  PubMed  Google Scholar 

  316. Breen G . Novel and alternate SNP and genetic technologies. Psychiatr Genet 2002; 12: 83–88.

    Article  PubMed  Google Scholar 

  317. Bunney WE, Bunney BG, Vawter MP, Tomita H, Li J, Evans SJ et al. Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders. Am J Psychiatry 2003; 160: 657–666.

    Article  PubMed  Google Scholar 

  318. Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003; 21: 1233–1237.

    Article  CAS  PubMed  Google Scholar 

  319. Pusch W, Wurmbach JH, Thiele H, Kostrzewa M . MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics 2002; 3: 537–548.

    Article  CAS  PubMed  Google Scholar 

  320. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Liu WM, Di X, Yang G, Matsuzaki H, Huang J, Mei R et al. Algorithms for large-scale genotyping microarrays. Bioinformatics 2003; 19: 2397–2403.

    Article  CAS  PubMed  Google Scholar 

  322. Storey JD, Tibshirani R . Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 2003; 224: 149–157.

    CAS  PubMed  Google Scholar 

  323. Thomas EA, George RC, Danielson PE, Nelson PA, Warren AJ, Lo D et al. Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism-related proteins. Mol Psychiatry 2003; 8: 950, 983–993.

    Article  CAS  PubMed  Google Scholar 

  324. Kontkanen O, Toronen P, Lakso M, Wong G, Castren E . Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 2002; 83: 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  325. Takahashi Y, Kumanishi T, Hayashi S . Using a DNA microarray method to examine gene expression in brain from clozapine-injected mice. Ann N Y Acad Sci 2004; 1025: 561–569.

    Article  CAS  PubMed  Google Scholar 

  326. Feher LZ, Kalman J, Puskas LG, Gyulveszi G, Kitajka K, Penke B et al. Impact of haloperidol and risperidone on gene expression profile in the rat cortex. Neurochem Int 2005; 47: 271–280.

    Article  CAS  PubMed  Google Scholar 

  327. MacDonald ML, Eaton ME, Dudman JT, Konradi C . Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiatry 2005; 57: 1041–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Chong VZ, Young LT, Mishra RK . cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 2002; 82: 1533–1539.

    Article  CAS  PubMed  Google Scholar 

  329. Sondhi S, Castellano JM, Chong VZ, Rogoza RM, Skoblenick KJ, Dyck BA et al. cDNA array reveals increased expression of glucose-dependent insulinotropic polypeptide following chronic clozapine treatment: role in atypical antipsychotic drug-induced adverse metabolic effects. Pharmacogenomics J 2006; 6: 131–140.

    Article  CAS  PubMed  Google Scholar 

  330. Chen ML, Chen CH . Microarray analysis of differentially expressed genes in rat frontal cortex under chronic risperidone treatment. Neuropsychopharmacology 2005; 30: 268–277.

    Article  CAS  PubMed  Google Scholar 

  331. Fatemi SH, Reutiman TJ, Folsom TD, Bell C, Nos L, Fried P et al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology 2006; 31: 1888–1899.

    Article  CAS  PubMed  Google Scholar 

  332. Rubin GM . The draft sequences. Comparing species. Nature 2001; 409: 820–821.

    Article  CAS  PubMed  Google Scholar 

  333. Petronis A . The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 2004; 55: 965–970.

    Article  CAS  PubMed  Google Scholar 

  334. Qiu J . Epigenetics: unfinished symphony. Nature 2006; 441: 143–145.

    Article  CAS  PubMed  Google Scholar 

  335. Petronis A . Epigenetics and twins: three variations on the theme. Trends Genet 2006; 22: 347–350.

    Article  CAS  PubMed  Google Scholar 

  336. Abdolmaleky HM, Thiagalingam S, Wilcox M . Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am J Pharmacogenomics 2005; 5: 149–160.

    Article  CAS  PubMed  Google Scholar 

  337. Sharma RP, Rosen C, Kartan S, Guidotti A, Costa E, Grayson DR et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res 2006; 88: 227–231.

    Article  PubMed  Google Scholar 

  338. Flomen R, Knight J, Sham P, Kerwin R, Makoff A . Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 2004; 32: 2113–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Pozzi L, Hakansson K, Usiello A, Borgkvist A, Lindskog M, Greengard P et al. Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J Neurochem 2003; 86: 451–459.

    Article  CAS  PubMed  Google Scholar 

  340. Yang BH, Son H, Kim SH, Nam JH, Choi JH, Lee JS . Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration. Psychiatry Clin Neurosci 2004; 58: 262–267.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In the past 2 years, Dr Jose de Leon has been on the advisory board of the Bristol-Myers Squibb and Roche Molecular Systems, Incs. He received investigator-initiated grants from Roche Molecular Systems, Inc., and Eli Lilly Research Foundation. Dr de Leon has lectured once supported by Eli Lilly, once supported by Bristol-Myers Squibb, twice supported by Janssen and six times by Roche Molecular Systems, Inc.

Dr Maria J Arranz is a consultant for the company TheraGenetics (UK), and actively collaborates with the company LGC (UK) in the development of genetic tests, including a test for the prediction of clozapine response. Dr Arranz has received consultancy money from LGC and has royalty rights over the clozapine response test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Arranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arranz, M., de Leon, J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 12, 707–747 (2007). https://doi.org/10.1038/sj.mp.4002009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002009

Keywords

This article is cited by

Search

Quick links