Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation

Abstract

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10−9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of fine-mapping resolution for distinct association signals for T2D obtained from ancestry-specific meta-analysis and multi-ancestry meta-regression.
Fig. 2: T2D-association signal at the BCAR1 locus colocalizes with multiple circulating plasma pQTL.
Fig. 3: Defining causal molecular mechanisms at the PROX1 locus.
Fig. 4: Transferability of multi-ancestry and ancestry-specific GRS into GWAS across diverse population groups.
Fig. 5: Positive selection acting on T2D index SNVs.

Similar content being viewed by others

Data availability

Association summary statistics from the multi-ancestry meta-analysis and annotation-informed fine-mapping are available through the AMP T2D Knowledge Portal (http://www.type2diabetesgenetics.org/) and the DIAGRAM Consortium data download website (http://diagram-consortium.org/downloads.html). Source data are provided with this paper.

References

  1. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  2. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016).

    Article  Google Scholar 

  3. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moltke, I. et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512, 190–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki, K. et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet. 51, 379–386 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 52, 680–691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  13. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  CAS  Google Scholar 

  14. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen, M.-H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, F. et al. Nodal induces apoptosis through activation of the ALK7 signaling pathway in pancreatic INS-1 β-cells. Am. J. Physiol. Endocrinol. Metab. 303, E132–E143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Emdin, C. A. et al. DNA sequence variation in ACVR1C encoding the activin receptor-like kinase 7 influences body fat distribution and protects against type 2 diabetes. Diabetes 68, 226–234 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  23. Vinuela, A. et al. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat. Commun. 11, 4912 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Giambartolomei, C. et al. Bayesian test for colocalization between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 11, e1005694 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Roman, T. S. et al. A type 2 diabetes-associated functional regulatory variant in a pancreatic islet enhancer at the ADCY5 locus. Diabetes 66, 2521–2530 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carrat, G. R. et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am. J. Hum. Genet. 100, 238–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pan, D. Z. et al. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat. Commun. 9, 1512 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Miguel-Escalada, I. et al. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat. Genet. 51, 1137–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chesi, A. et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 10, 1260 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chiou, J. et al. Single-cell chromatin accessibility reveals pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat. Genet. 53, 455–466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esteghamat, F. et al. CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nat. Genet. 51, 1233–1243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng, N. H. J. et al. Tissue-specific alteration of metabolic pathways influences glycemic regulation. Preprint at bioRxiv https://doi.org/10.1101/790618 (2019).

  36. Gloyn, A. L. Exocrine or endocrine? A circulating pancreatic elastase that regulates glucose homeostasis. Nat. Metab. 1, 853–855 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Wesolowska-Andersen, A. et al. Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals. eLife 9, e51503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mars, N. et al. Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers. Nat. Med. 26, 549–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Ayub, Q. et al. Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes. Am. J. Hum. Genet. 94, 176–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, R. et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 8, e1002621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975 (2021).

  47. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mitt, M. et al. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel. Eur. J. Hum. Genet. 25, 869–876 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moon, S. et al. The Korea Biobank Array: design and identification of coding variants associated with blood biochemical traits. Sci. Rep. 9, 1382 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sobota, R. S. et al. Addressing population-specific multiple testing burdens in genetic association studies. Ann. Hum. Genet. 79, 136–147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  60. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  63. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pickrell, J. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wakefield, J. A. Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest. 121, 3589–3597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A complete list of acknowledgements and funding appears in the Supplementary Note. This research was funded in part by the Wellcome Trust (grant numbers 064890, 072960, 083948, 084723, 085475, 086113, 088158, 090367, 090532, 095101, 098017, 098051, 098381, 098395, 101033, 101630, 104085, 106130, 200186, 200837, 202922, 203141, 206194, 212259, 212284, 212946 and 220457). For the purpose of open access, the authors have applied a CC-BY public copyright licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

DIAMANTE Consortium coordination, A. Mahajan, M.I.M., A.P.M.; manuscript preparation, A. Mahajan, C.N.S., W. Zhang, M.C.Y.N., L.E.P., H.K., G.Z.Y., S. Rüeger, L.S., A.L.G., M.B., J.I.R., M.I.M., A.P.M.; coordination of ancestry-specific GWAS collections, A. Mahajan, C.N.S., W. Zhang, M.C.Y.N., L.E.P., D.W.B., J.E.B., J.C.C., X.S., M.B.; central analysis group, A. Mahajan, C.N.S., W. Zhang, M.C.Y.N., L.E.P., H.K., Y.J.K., M. Horikoshi, J.M.M., D.T., S. Moon, S.-H.K., N.R.R., N.W.R., M. Loh, B.-J.K., J. Flanagan, J.B.M., K.L.M., J.E.B., J.C.C., X.S., M.B., J.I.R., M.I.M., A.P.M.; PROX1 functional analyses, G.Z.Y., F.A., J.M.T., A.L.G.; GRS analyses in FinnGen, S. Rüeger, P.d.B.P.; selection analyses, L.S., S.R.M.; single-cell chromatin accessibility data, J. Chiou, D.G., S.P., M. Sander, K.J.G.; islet promoter Hi-C data generation, I.M.-E., J. Ferrer; study-level primary analyses, A. Mahajan, C.N.S., W. Zhang, M.C.Y.N., L.E.P., Y.J.K., M. Horikoshi, J.M.M., D.T., S. Moon, S.-H.K., K. Lin, F.B., M.H.P., F.T., J.N., X.G., A. Lamri, M.N., R.A.S., J.-J.L., A.H.-C., M. Graff, J.-F.C., E.J.P., J.Y., L.F.B., Y.T., Y.H., V.S., J.P.C., M.K., N.G., E.M.S., I.P., T.S., M.W., C. Sarnowski, C.G., D.N., S. Trompet, J. Long, M. Sun, L.T., W.-M.C., M. Ahmad, R.N., V.J.Y.L., C.H.T.T., Y.Y.J., C.-H.C., L.M.R., C. Lecoeur, B.P.P., A.N., L.R.Y., G.C., R.A.J., S. Tajuddin, E.K.K., P.A., A.H.X., H.S.C., B.E.C., J. Tan, X.S., A.P.M.; study-level phenotyping, genotyping and additional analyses, L.S.A., A.A., C.A.A.-S., M. Akiyama, S.S.A., A.B., Z.B., J.B.-J., I.B., J.A.B., C.M.B., T.A.B., M. Canouil, J.C.N.C., L.-C.C., M.-L.C., J. Chen, S.-H.C., Y.-T.C., Z.C., L.-M.C., M. Cushman, S.K.D., H.J.d.S., G.D., L.D., A.P.D., S.D., Q.D., K.-U.E., L.S.E., D.S.E., M.K.E., K.F., J.S.F., I.F., M.F., O.H.F., T.M.F., B.I.F., C.F., P.G., H.C.G., V.G., C.G.-V., M.E.G.-V., M.O.G., P.G.-L., M. Gross, Y.G., S. Hackinger, S. Han, A.T.H., C.H., A.-G.H., W. Hsueh, M. Huang, W. Huang, Y.-J.H., M.Y.H., C.-M.H., S.I., M.A.I., M. Ingelsson, M.T.I., M. Isono, H.-M.J., F.J., G.J., J.B.J., M.E.J., T.J., Y.K., F.R.K., A. Kasturiratne, T. Katsuya, V.K., T. Kawaguchi, J.M.K., A.N.K., C.-C.K., M.G.K., K.K., J. Kriebel, F.K., J. Kuusisto, K. Läll, L.A.L., M.-S.L., N.R.L., A. Leong, L. Li, Y. Li, R.L.-G., S. Ligthart, C.M.L., A. Linneberg, C.-T.L., J. Liu, A.E.L., T.L., J. Luan, A.O.L., X.L., J. Lv, V.L., V.M., K.R.M., T.M., A. Metspalu, A.D.M., G.N.N., J.L.N., M.A.N., U.N., S.S.N., I.N., Y.O., L.O., S.R.P., M.A. Pereira, A.P., F.J.P., B.P., G. Prasad, L.J.R.-T., A.P.R., M.R., R.R., K.R., C. Sabanayagam, K. Sandow, N.S., S.S., C. Schurmann, M. Shahriar, J.S., D.M.S., D. Shriner, J.A.S., W.Y.S., A.S., A.M.S., K. Strauch, K. Suzuki, A.T., K.D.T., B. Thorand, G.T., U.T., B. Tomlinson, F.-J.T., J. Tuomilehto, T.T.-L., M.S.U., A.V.-S., R.M.v.D., J.B.v.K., R.V., M.V., N.W.-R., E.W., E.A.W., A.R.W., K.W.v.D., D.R.W., C.S.Y., K. Yamamoto, T.Y., L.Y., K. Yoon, C.Y., J.-M.Y., S.Y., L.Z., W. Zheng; study-level principal investigator, L.J.R., M. Igase, E. Ipp, S. Redline, Y.S.C., L. Lind, M.A. Province, C.L.H., P.A.P., E. Ingelsson, A.B.Z., B.M.P., Y.-X.W., C.N.R., D.M.B., F.M., Y. Liu, E.Z., M.Y., S.S.R., C.K., J.S.P., J.C.E., Y.-D.I.C., P.F., J.G.W., W.H.H.S., S.L.R.K., J.-Y.W., M.G.H., R.C.W.M., T.-Y.W., L.G., D.O.M.-K., G.R.C., F.S.C., D.B., G. Paré, M.M.S., H.A., A.A.M., X.-O.S., K.-S.P., J.W.J., M. Cruz, R.M.-C., H.G., C.-Y.C., E.P.B., A.D., E.-S.T., J.D., N.K., M. Laakso, A. Köttgen, W.-P.K., C.N.A.P., S. Liu, G.A., J.S.K., R.J.F.L., K.E.N., C.A.H., J.C.F., D. Saleheen, T.H., O.P., R.M., C. Langenberg, N.J.W., S. Maeda, T. Kadowaki, J. Lee, I.Y.M., R.G.W., K. Stefansson, J.B.M., K.L.M., D.W.B., J.C.C., M.B., J.I.R., M.I.M., A.P.M.

Corresponding authors

Correspondence to Anubha Mahajan, Mark I. McCarthy or Andrew P. Morris.

Ethics declarations

Competing interests

A. Mahajan is now an employee of Genentech and a holder of Roche stock. R.A.S. is now an employee of GlaxoSmithKline. V.S. is an employee of deCODE Genetics–Amgen. L.S.E. is now an employee of Bristol Myers Squibb. J.S.F. has consulted for Shionogi. T.M.F. has consulted for Sanofi and Boerhinger Ingelheim and received funding from GSK. H.C.G. holds the McMaster–Sanofi Population Health Institute Chair in Diabetes Research and Care; reports research grants from Eli Lilly, AstraZeneca, Merck, Novo Nordisk and Sanofi; reports honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, DKSH, Zuellig, Roche and Sanofi; and reports consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Pfizer, Sanofi, Kowa and Hanmi. M. Ingelsson is a paid consultant for BioArctic. R.L.-G. is a part-time consultant for Metabolon. A.E.L. is now an employee of the Regeneron Genetics Center and holds shares in Regeneron Pharmaceuticals. M.A.N. currently serves on the scientific advisory board for Clover Therapeutics and is an advisor to Neuron23. S.R.P. has received grant funding from Bayer Pharmaceuticals, Philips Respironics and Respicardia. N.S. has consulted for or been on speaker bureaus for Abbott, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi, Novartis, Novo Nordisk, Sanofi and Pfizer and has received grant funding from AstraZeneca, Boehringer Ingelheim, Novartis and Roche Diagnostics. A.M.S. receives funding from Seven Bridges Genomics to develop tools for the NHLBI BioData Catalyst consortium. G.T. is an employee of deCODE Genetics–Amgen. U.T. is an employee of deCODE Genetics–Amgen. E. Ingelsson is now an employee of GlaxoSmithKline. B.M.P. serves on the steering committee of the Yale Open Data Access Project funded by Johnson & Johnson. R.C.W.M. reports research funding from AstraZeneca, Bayer, Novo Nordisk, Pfizer, Tricida and Sanofi and has consulted for or received speakers fees from AstraZeneca, Bayer and Boehringer Ingelheim, all of which have been donated to the Chinese University of Hong Kong to support diabetes research. D.O.M.-K. is a part-time clinical research consultant for Metabolon. S. Liu reports consulting payments and honoraria or promises of the same for scientific presentations or reviews at numerous venues, including but not limited to Barilla, by-Health, Ausa Pharmed, the Fred Hutchinson Cancer Center, Harvard University, the University of Buffalo, Guangdong General Hospital and the Academy of Medical Sciences; is a consulting member for Novo Nordisk; is a member of the data safety and monitoring board for a trial of pulmonary hypertension in patients with diabetes at Massachusetts General Hospital; receives royalties from UpToDate; and receives an honorarium from the American Society for Nutrition for his duties as an associate editor. K. Stefansson is an employee of deCODE Genetics–Amgen. K.J.G. consults for Genentech and holds stock in Vertex Pharmaceuticals. A.L.G.’s spouse is an employee of Genentech and holds stock options in Roche. M.I.M. has served on advisory panels for Pfizer, Novo Nordisk and Zoe Global; has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly and research funding from AbbVie, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, Servier and Takeda; is now an employee of Genentech and a holder of Roche stock. The remaining authors declare no competing interests. The views expressed in this article are those of the authors and do not necessarily represent those of the NHS, the NIHR or the UK Department of Health; the National Heart, Lung, and Blood Institute, the National Institutes of Health or the US Department of Health and Human Services.

Peer review

Peer review information

Nature Genetics thanks Constantin Polychronakos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Study overview.

Summary of data resources and downstream analyses to identify candidate causal genes at T2D susceptibility loci.

Extended Data Fig. 2 Axes of genetic variation separating GWAS of T2D across diverse populations.

The first three axes of genetic variation (PC 1, PC 2 and PC 3) from multi-dimensional scaling of the Euclidean distance matrix between populations are sufficient to separate five ancestry groups: African (AFR), East Asian (EAS), European (EUR), Hispanic (HIS) and South Asian (SAS). GWAS acronyms are defined in Supplementary Table 1. The second axis of genetic variation (PC 2) separates African American and continental African GWAS. The third axis of genetic variation (PC 3) reveals finer-scale differences between GWAS within ancestry groups: Hispanic studies with a greater proportion of American ancestry (SIGMA (2), MC (1) and MC (2)) or African ancestry (WHI, MESA, HCHS/SOL and BIOME); East Asian studies of Chinese, Japanese and Korean ancestry from those of Malay and Filipino ancestry (SIMES and CLHNS); South Asian studies of Sri Lankan, Bangladeshi and South Indian ancestry (RHS, EPIDREAM, SINDI, GRCCDS and BPC) from those of North Indian and Pakistani ancestry; and Northern European ancestry studies from the study of Greek ancestry from Southern Europe (GOMAP). GWAS were aligned to ancestry groups based on self-report at the study level.

Extended Data Fig. 3 Manhattan plot of genome-wide T2D association from multi-ancestry meta-regression (MR-MEGA) of up to 180,834 cases and 1,159,055 controls.

Each point represents an SNV passing quality control in the multi-ancestry meta-regression, plotted with their association P-value (on a -log10 scale, truncated at 300) as a function of genomic position (NCBI build 37). Association signals attaining genome-wide significance are highlighted in pale blue (P < 5 × 10-9) and dark blue (P < 5 × 10−8). The names of novel loci names are highlighted with their association P-value from the multi-ancestry meta-regression.

Extended Data Fig. 4 Comparison of association P-values at lead SNVs at T2D loci between multi-ancestry meta-regression (MR-MEGA), fixed-effects meta-analysis and random-effects (RE2) meta-analysis of up to 180,834 cases and 1,159,055 controls.

Each point corresponds to an SNV, plotted according to P-values (on a -log10 scale) from MR-MEGA on the x-axis and fixed- or random-effects meta-analysis on the y-axis. SNVs below the y = x line demonstrate stronger association with MR-MEGA. The lead SNV at the TCF7L2 locus has been removed to improve clarity of presentation.

Extended Data Fig. 5 Comparison of loci identified at genome-wide significance (P < 5 × 10-8) in multi-ancestry meta-regression (180,834 cases and 1,159,055 controls), and East Asian and European ancestry-specific meta-analyses (56,268 cases and 227,155 controls, and 80,154 cases and 853,816 controls, respectively).

a, Association P-values at loci identified in East Asian and European ancestry-specific meta-analyses. Each point corresponds to a locus, plotted according to the P-value (on a -log10 scale) for the lead SNP in the multi-ancestry meta-regression on the x-axis and the lead SNP in the ancestry-specific meta-analysis on the y-axis. The TCF7L2 locus has been removed to improve clarity of presentation. Loci plotted below the y = x line show stronger evidence for association in the multi-ancestry meta-regression. b, Overlap of loci identified in multi-ancestry meta-regression and ancestry-specific meta-analyses.

Extended Data Fig. 6 Summary statistics from joint fGWAS model of enriched functional and regulatory annotations across distinct T2D association signals from multi-ancestry meta-regression (MR-MEGA) of up to 180,834 cases and 1,159,055 controls.

Each point corresponds to an annotation, plotted for the log-enrichment for T2D association on the x-axis, with bars representing the corresponding 95% confidence interval (CI).

Extended Data Fig. 7 Comparison of number of SNVs in 99% credible set for distinct association signals for T2D obtained from the multi-ancestry meta-regression of 180,834 cases and 1,159,055 controls under uniform and annotation-informed prior models of causality.

Each point corresponds to a distinct association signal, plotted according to the log10 credible set size under the uniform prior on the x-axis and the log10 credible set size under the annotation-informed prior on the y-axis. The 144 (42.6%) signals below the y = x line were more precisely fine-mapped under the annotation-informed prior.

Extended Data Fig. 8 Differences in LD structure between ancestry groups at the PROX1 locus for distinct association signals from multi-ancestry meta-regression (MR-MEGA) of up to 180,840 cases and 1,159,185 controls.

Each point represents an SNV passing quality control in the multi-ancestry meta-regression (after conditional analysis), plotted with their association P-value (on a log10 scale) as a function of genomic position (NCBI build 37). The index SNV is represented by the purple symbol. The color coding of all other SNVs indicates LD with the index variant in the ancestry-matched reference haplotypes from the 1000 Genomes Project panel: red, r2 ≥ 0.8; gold, 0.6 ≤ r2 < 0.8; green, 0.4 ≤ r2 < 0.6; cyan, 0.2 ≤ r2 < 0.4; blue, r2 < 0.2; grey, r2 unknown. Recombination rates are estimated from Phase II HapMap and gene annotations are taken from the University of California Santa Cruz genome browser.

Extended Data Fig. 9 Power of multi-ancestry GRS to predict T2D status in 129,230 individuals of Finnish ancestry from FinnGen.

a, Age under receiver operating characteristic curve (AUROC) after adding BMI and GRS to a baseline model adjusting for age and sex. b, Prevalence of T2D across GRS deciles. c, Boxplot of the distribution of age at T2D diagnosis across GRS deciles: box defines upper quartile, median and lower quartile, bars define maximum and minimum values within 1.5 x interquartile range of the upper and lower quartiles, other points are outliers.

Extended Data Fig. 10 Evidence for selection from Relate in African ancestry populations of subsets of T2D risk variants (effect aligned to derived allele) that are associated with other traits available in the UK Biobank.

Nominal evidence for selection (P < 0 .05) is indicated by the dashed line. The color of each point indicates the evidence for selection of subsets of T2D risk variants that are not associated with the other trait: P < 0.05 (pink) and P ≥ 0.05 (black). Population abbreviations: ESN, Esan in Nigeria; GWD, Gambian in Western Divisions in the Gambia; LWK, Luhya in Webuye, Kenya; MSL, Mende in Sierra Leone; YRI, Yoruba in Ibadan, Nigeria.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–9

Reporting Summary

Supplementary Tables

Supplementary Tables 1–22.

Source data

Source Data Fig. 3

Source data for Fig. 3c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, A., Spracklen, C.N., Zhang, W. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet 54, 560–572 (2022). https://doi.org/10.1038/s41588-022-01058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01058-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing