Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

An optogenetic toolbox designed for primates

Abstract

Optogenetics is a technique for controlling subpopulations of neurons in the intact brain using light. This technique has the potential to enhance basic systems neuroscience research and to inform the mechanisms and treatment of brain injury and disease. Before launching large-scale primate studies, the method needs to be further characterized and adapted for use in the primate brain. We assessed the safety and efficiency of two viral vector systems (lentivirus and adeno-associated virus), two human promoters (human synapsin (hSyn) and human thymocyte-1 (hThy-1)) and three excitatory and inhibitory mammalian codon-optimized opsins (channelrhodopsin-2, enhanced Natronomonas pharaonis halorhodopsin and the step-function opsin), which we characterized electrophysiologically, histologically and behaviorally in rhesus monkeys (Macaca mulatta). We also introduced a new device for measuring in vivo fluorescence over time, allowing minimally invasive assessment of construct expression in the intact brain. We present a set of optogenetic tools designed for optogenetic experiments in the non-human primate brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of preparation.
Figure 2: Representative example of electrophysiology results and population summary from the eNpHR2.0-expressing site.
Figure 3: Representative examples of electrophysiology results and population summary from the ChR2-expressing sites.
Figure 4: Lack of effect of optical stimulation on passive behavior.
Figure 5: Prolonged activation of spiking with a step function opsin (SFO).
Figure 6: In vivo fluorescence detector and measurements.
Figure 7: Histological analysis of cortex.
Figure 8: Evaluation of cell health.

Similar content being viewed by others

References

  1. Hikosaka, O. & Wurtz, R.H. Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Res. 272, 368–372 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, F., Wang, L.P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J. et al. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J. Neural Eng. 6, 055007 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  11. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilja, V. et al. Challenges and opportunities for next-generation intra-cortically based neural prostheses. IEEE Trans. Biomed. Eng. (in the press).

  16. Kim, S., Tathireddy, P., Normann, R.A. & Solzbacher, F. Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 493–501 (2007).

    Article  PubMed  Google Scholar 

  17. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell type–specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nat. Neurosci. 12, 229–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Bogen, I.L., Haug, K.H., Roberg, B., Fonnum, F. & Walaas, S.I. The importance of synapsin I and II for neurotransmitter levels and vesicular storage in cholinergic, glutamatergic and GABAergic nerve terminals. Neurochem. Int. 55, 13–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Caroni, P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J. Neurosci. Methods 71, 3–9 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 8, 988–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Disbrow, E., Litinas, E., Recanzone, G.H., Padberg, J. & Krubitzer, L. Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys. J. Comp. Neurol. 462, 382–399 (2003).

    Article  PubMed  Google Scholar 

  25. Leichnetz, G.R. Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J. Comp. Neurol. 254, 460–492 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2 and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, E.G., Huntley, G.W. & Benson, D.L. Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory-motor cortex: comparison with GAD-67 expression. J. Neurosci. 14, 611–629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houser, C.R., Hendry, S.H., Jones, E.G. & Vaughn, J.E. Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J. Neurocytol. 12, 617–638 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Diester, I. & Nieder, A. Complementary contributions of prefrontal neuron classes in abstract numerical categorization. J. Neurosci. 28, 7737–7747 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaufman, M.T. et al. Roles of monkey premotor neuron classes in movement preparation and execution. J. Neurophysiol. 104, 799–810 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Calvin, W.H. & Sypert, G.W. Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. J. Neurophysiol. 39, 420–434 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. Mullen, R.J., Buck, C.R. & Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS  PubMed  Google Scholar 

  34. McLendon, R.E. & Bigner, D.D. Immunohistochemistry of the glial fibrillary acidic protein: basic and applied considerations. Brain Pathol. 4, 221–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Colle, M.A. et al. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum. Mol. Genet. 19, 147–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Dodiya, H.B. et al. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol. Ther. 18, 579–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Kaplitt, M.G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Christine, C.W. et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73, 1662–1669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus types 1, 2, 5, 6, 8 and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. McFarland, N.R., Lee, J.S., Hyman, B.T. & McLean, P.J. Comparison of transduction efficiency of recombinant AAV serotypes 1, 2, 5, and 8 in the rat nigrostriatal system. J. Neurochem. 109, 838–845 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frigault, M.M., Lacoste, J., Swift, J.L. & Brown, C.M. Live-cell microscopy—tips and tools. J. Cell Sci. 122, 753–767 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Nathanson, J.L., Yanagawa, Y., Obata, K. & Callaway, E.M. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161, 441–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gordon, T. et al. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury. Neurosurgery 65, A132–A144 (2009).

    Article  PubMed  Google Scholar 

  45. Chen, C.H. et al. Role of PKA in the anti-Thy-1 antibody-induced neurite outgrowth of dorsal root ganglionic neurons. J. Cell. Biochem. 101, 566–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Histed, M.H., Bonin, V. & Reid, R.C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gunaydin, L.A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Taylor, D.M., Tillery, S.I. & Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Churchland, M.M. & Shenoy, K.V. Delay of movement caused by disruption of cortical preparatory activity. J. Neurophysiol. 97, 348–359 (2007).

    Article  PubMed  Google Scholar 

  50. Noudoost, B. & Moore, T. A reliable microinjectrode system for use in behaving monkeys. J. Neurosci. Methods 194, 218–223 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Vessal and A. Lilak for technical assistance during perfusions, M. Churchland for technical support during surgeries and technical discussions, S. Ryu for surgical assistance, M. Risch for veterinary care, D. Haven for technical support, S. Eisensee for administrative assistance, I. Witten for advice and members of the Deisseroth and Shenoy laboratories for discussions. I.D. is supported by a Human Frontier Science Program fellowship and a German Academic Exchange Service Award, M.T.K. by a National Science Foundation graduate fellowship, M.M. by Bio-X and a Stanford Graduate Fellowship and R.P. by a Stanford University Dean's Postdoctoral Fellowship Award. W.G. is supported by a Stanford Graduate Fellowship. O.Y. is supported by a Human Frontier Science Program fellowship. K.D. is supported by the William M. Keck Foundation, the Snyder Foundation, the Albert Yu and Mary Bechmann Foundation, the Wallace Coulter Foundation, the California Institute for Regenerative Medicine, the McKnight Foundation, the Esther A. and Joseph Klingenstein Fund, the National Science Foundation, the National Institute of Mental Health, the National Institute on Drug Abuse and a US National Institutes of Health Director's Pioneer Award. K.V.S. is supported by a Burroughs Wellcome Fund Career Award in the Biomedical Sciences, US National Institutes of Health–National Institute of Neurological Disorders and Stroke grant CRCNS R01-NS054283 and a US National Institutes of Health Director's Pioneer Award (1DP1OD006409). K.D. and K.V.S. are supported by Defense Advanced Research Projects Agency Reorganization and Plasticity to Accelerate Injury Recovery (N66001-10-C-2010).

Author information

Authors and Affiliations

Authors

Contributions

I.D., K.V.S. and K.D. conceived and designed the experiments. I.D. wrote the manuscript and all authors contributed to its editing. I.D. conducted all experiments, histological analysis and data analysis. M.T.K. contributed to the neural recording and stimulation experiments and their analysis. R.P. developed the in vivo fluorescence detector and M.M. contributed to the in vivo fluorescence measurements and analysis. W.G. participated in immunostaining. C.R. designed and cloned the hThy-1 and hSyn constructs. O.Y. provided the SFO viral vector. K.D. and K.V.S. supervised all aspects of the work.

Corresponding authors

Correspondence to Karl Deisseroth or Krishna V Shenoy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–8 (PDF 37145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diester, I., Kaufman, M., Mogri, M. et al. An optogenetic toolbox designed for primates. Nat Neurosci 14, 387–397 (2011). https://doi.org/10.1038/nn.2749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing