Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting cells with single vectors using multiple-feature Boolean logic

Abstract

Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversifying recombinase targeting strategies.
Figure 2: Intron engineering for INTRSECT.
Figure 3: INTRSECT: recombinases with engineered introns enable intersectional targeting in vitro.
Figure 4: INTRSECT specificity and functionality in vivo.
Figure 5: Exclusion logic using INTRSECT.
Figure 6: Combinatorial targeting with multiplexed recombinases.

Similar content being viewed by others

References

  1. Crick, F.H. Thinking about the brain. Sci. Am. 241, 219–232 (1979).

    Article  CAS  Google Scholar 

  2. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  3. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS  PubMed  Google Scholar 

  4. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  Google Scholar 

  5. Zhang, F. in Neuronal Circuits: From Structure to Function (Cold Spring Harbor Laboratory, 2008).

  6. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  7. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  8. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  9. Saunders, A., Johnson, C.A. & Sabatini, B.L. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6, 47 (2012).

    Article  CAS  Google Scholar 

  10. Kuhlman, S.J. & Huang, Z.J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PloS ONE 3, e2005 (2008).

    Article  Google Scholar 

  11. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J.J. & Dymecki, S.M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    Article  CAS  Google Scholar 

  12. Siuti, P., Yazbek, J. & Lu, T.K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31, 448–452 (2013).

    Article  CAS  Google Scholar 

  13. Marti, T. Refolding of bacteriorhodopsin from expressed polypeptide fragments. J. Biol. Chem. 273, 9312–9322 (1998).

    Article  CAS  Google Scholar 

  14. Schmitt, C. et al. Specific expression of Channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS ONE 7, e43164 (2012).

    Article  CAS  Google Scholar 

  15. Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    Article  Google Scholar 

  16. Sauer, B. & McDermott, J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. 32, 6086–6095 (2004).

    Article  CAS  Google Scholar 

  17. Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994).

    Article  CAS  Google Scholar 

  18. Mount, S.M. A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  19. Zhang, M.Q. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7, 919–932 (1998).

    Article  CAS  Google Scholar 

  20. Chapman, B.S., Thayer, R.M., Vincent, K.A. & Haigwood, N.L. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res. 19, 3979–3986 (1991).

    Article  CAS  Google Scholar 

  21. Ishida, N., Ueda, S., Hayashida, H., Miyata, T. & Honjo, T. The nucleotide sequence of the mouse immunoglobulin epsilon gene: comparison with the human epsilon gene sequence. EMBO J. 1, 1117–1123 (1982).

    Article  CAS  Google Scholar 

  22. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  Google Scholar 

  23. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    CAS  Google Scholar 

  24. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).

    Article  CAS  Google Scholar 

  25. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  26. Ferraguti, F. et al. Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus 14, 193–215 (2004).

    Article  CAS  Google Scholar 

  27. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).

    Article  CAS  Google Scholar 

  28. Klausberger, T. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30, 947–957 (2009).

    Article  Google Scholar 

  29. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  30. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  Google Scholar 

  31. Van Bockstaele, E.J. & Pickel, V.M. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 682, 215–221 (1995).

    Article  CAS  Google Scholar 

  32. Stamatakis, A.M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013).

    Article  CAS  Google Scholar 

  33. Suzuki, E. & Nakayama, M. VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. 39, e49 (2011).

    Article  CAS  Google Scholar 

  34. Wickersham, I.R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  35. Yang, J. et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73, 9468–9477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakai, H., Storm, T.A. & Kay, M.A. Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat. Biotechnol. 18, 527–532 (2000).

    Article  CAS  Google Scholar 

  37. Buchman, A.R. & Berg, P. Comparison of intron-dependent and intron-independent gene expression. Mol. Cell. Biol. 8, 4395–4405 (1988).

    Article  CAS  Google Scholar 

  38. Palmiter, R.D., Sandgren, E.P., Avarbock, M.R., Allen, D.D. & Brinster, R.L. Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88, 478–482 (1991).

    Article  CAS  Google Scholar 

  39. Reed, R. & Maniatis, T. A role for exon sequences and splice-site proximity in splice-site selection. Cell 46, 681–690 (1986).

    Article  CAS  Google Scholar 

  40. Brunak, S., Engelbrecht, J. & Knudsen, S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220, 49–65 (1991).

    Article  CAS  Google Scholar 

  41. Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    Article  CAS  Google Scholar 

  42. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  Google Scholar 

  43. Donello, J.E., Loeb, J.E. & Hope, T.J. Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J. Virol. 72, 5085–5092 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kay (Stanford) for providing the pRC-DJ plasmid used to produce AAV-DJ; M. Bigos at the Stanford Shared FACS Facility for assistance with experiment planning and data analysis; S. Roy for extensive discussions regarding intron function and structure; P. Wu for technical assistance in mouse engineering and characterization; and the entire Deisseroth lab for helpful discussions. The Neuroscience Gene Vector and Virus Core at Stanford is funded in part by US National Institutes of Health grant # NINDS P30 NS069375-01A1. This work is supported by the Stanford Medical Scientist Training Program (MSTP; L.E.F. and J.M.), a Stanford Bio-X Fellowship (J.M. and M. Hyun), the Samsung Scholarship (M. Hyun), the Robertson Neuroscience Fund of Cold Spring Harbor Laboratory (M. He, J.T. and Z.J.H.), the Stony Brook University MSTP (J.T.), a Howard Hughes Medical Institute International Student Fellowship (A.S.), National Science Foundation (NSF) grant 0801700 (L.G.), the NSF Graduate Research Fellowship Program (K.A.Z.), the New York University MSTP (H.B.), the Human Frontiers Science Project and German Academic Exchange Service (DAAD; I.D.), and US National Institute on Drug Abuse (NIDA) DA024763 (C.E.B.). K.D. is supported by the Wiegers Family Fund, US National Institute of Mental Health, NIDA, Defense Advanced Research Projects Agency REPAIR Program, Keck Foundation, McKnight Foundation, Gatsby Charitable Foundation, Snyder Foundation, Woo Foundation, Tarlton Foundation, and Albert Yu and Mary Bechman Foundation. All tools and methods are distributed and supported freely at http://www.optogenetics.org/ and Addgene.

Author information

Authors and Affiliations

Authors

Contributions

L.E.F., J.M., C.R. and K.D. designed the study and interpreted results. L.E.F., J.M. and K.D. wrote the paper. L.E.F. and J.M. coordinated the experiments. L.E.F., J.M., S.Y.L., A.B. and A.S. performed in vitro electrophysiology experiments. J.M. and K.A.Z. performed in vivo electrophysiology experiments. L.E.F., J.M., M. Hyun, A.S., K.A.Z., H.B. and I.D. performed viral injections. L.E.F., J.M., M. Hyun, S.Y.L., J.T., K.A.Z., H.B., H.S., I.D. and C.P. performed immunohistochemistry. L.E.F., C.R., R.N., C.E.B. and F.M.B. provided viruses. L.G., J.M. and L.E.F. performed statistical analysis. L.E.F., J.M., C.R., M. Hyun, A.B. and C.P. performed molecular engineering and characterization. M. He, J.T. and Z.J.H. provided animals. All authors contributed to editing. K.D. supervised all aspects of the project.

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Note (PDF 6286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenno, L., Mattis, J., Ramakrishnan, C. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11, 763–772 (2014). https://doi.org/10.1038/nmeth.2996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing