Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism

Subjects

Abstract

Autism spectrum disorders (ASDs) represent a formidable challenge for psychiatry and neuroscience because of their high prevalence, lifelong nature, complexity and substantial heterogeneity. Facing these obstacles requires large-scale multidisciplinary efforts. Although the field of genetics has pioneered data sharing for these reasons, neuroimaging had not kept pace. In response, we introduce the Autism Brain Imaging Data Exchange (ABIDE)—a grassroots consortium aggregating and openly sharing 1112 existing resting-state functional magnetic resonance imaging (R-fMRI) data sets with corresponding structural MRI and phenotypic information from 539 individuals with ASDs and 573 age-matched typical controls (TCs; 7–64 years) (http://fcon_1000.projects.nitrc.org/indi/abide/). Here, we present this resource and demonstrate its suitability for advancing knowledge of ASD neurobiology based on analyses of 360 male subjects with ASDs and 403 male age-matched TCs. We focused on whole-brain intrinsic functional connectivity and also survey a range of voxel-wise measures of intrinsic functional brain architecture. Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity. Exploratory analyses using an array of regional metrics of intrinsic brain function converged on common loci of dysfunction in ASDs (mid- and posterior insula and posterior cingulate cortex), and highlighted less commonly explored regions such as the thalamus. The survey of the ABIDE R-fMRI data sets provides unprecedented demonstrations of both replication and novel discovery. By pooling multiple international data sets, ABIDE is expected to accelerate the pace of discovery setting the stage for the next generation of ASD studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders — autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surveill Summ 2012; 61: 1–19.

    Google Scholar 

  2. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 2011; 168: 904–912.

    Article  PubMed  Google Scholar 

  3. Lord C, Petkova E, Hus V, Gan W, Lu F, Martin DM et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2012; 69: 306–313.

    Article  PubMed  Google Scholar 

  4. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC et al. The Autism Diagnostic Observation Schedule-Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  5. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 2001; 69: 463–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH et al. Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry, advance online publication, 9 October 2012; doi:10.1038/mp.2012.138 (e-pub ahead of print).

  7. Fischbach GD, Lord C . The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 2010; 68: 192–195.

    Article  CAS  PubMed  Google Scholar 

  8. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Minshew NJ, Williams DL . The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch Neurol 2007; 64: 945–950.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Just MA, Cherkassky VL, Keller TA, Minshew NJ . Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127 (Part 8): 1811–1821.

    Article  PubMed  Google Scholar 

  11. Vissers ME, Cohen MX, Geurts HM . Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev 2012; 36: 604–625.

    Article  PubMed  Google Scholar 

  12. Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ et al. The resting brain: unconstrained yet reliable. Cereb Cortex 2009; 19: 2209–2229.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL . Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010; 103: 297–321.

    Article  PubMed  Google Scholar 

  14. Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP . Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci 2012; 16: 181–188.

    Article  PubMed  Google Scholar 

  15. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA 2010; 107: 4734–4739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mennes M, Biswal B, Castellanos FX, Milham MP . Making data sharing work: the FCP/INDI experience. NeuroImage, advance online publication, 30 October 2012; doi:10.1016/j.neuroimage.2012.10.064 (e-pub ahead of print).

  17. ADHD-200 Consortium. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 2012; 6: 1–5.

    Google Scholar 

  18. Fair DA, Nigg JT, Iyer S, Bathula D, Mills KL, Dosenbach NU et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci 2012; 6: 80.

    PubMed  Google Scholar 

  19. Tomasi D, Volkow ND . Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 2012; 71: 443–450.

    Article  PubMed  Google Scholar 

  20. Muller RA, Shih P, Keehn B, Deyoe JR, Leyden KM, Shukla DK . Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb Cortex 2011; 21: 2233–2243.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A . Fractionation of social brain circuits in autism spectrum disorders. Brain 2012; 135 (Part 9): 2711–2725.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kennedy DP, Redcay E, Courchesne E . Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci USA 2006; 103: 8275–8280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage 2010; 53: 247–256.

    Article  PubMed  Google Scholar 

  24. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage 2009; 47: 764–772.

    Article  PubMed  Google Scholar 

  25. Rudie JD, Shehzad Z, Hernandez LM, Colich NL, Bookheimer SY, Iacoboni M et al. Reduced functional integration and segregation of distributed neural systems underlying social and emotional information processing in autism spectrum disorders. Cereb Cortex 2012; 22: 1025–1037.

    Article  PubMed  Google Scholar 

  26. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL . Functional-anatomic fractionation of the brain’s default network. Neuron 2010; 65: 550–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 2010; 1321: 169–179.

    Article  CAS  PubMed  Google Scholar 

  28. Dinstein I, Pierce K, Eyler L, Solso S, Malach R, Behrmann M et al. Disrupted neural synchronization in toddlers with autism. Neuron 2011; 70: 1218–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex 2011; 21: 1134–1146.

    Article  PubMed  Google Scholar 

  30. Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O et al. Network centrality in the human functional connectome. Cereb Cortex 2012; 22: 1862–1875.

    Article  PubMed  Google Scholar 

  31. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 2009; 29: 1860–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF et al. The oscillating brain: complex and reliable. NeuroImage 2010; 49: 1432–1445.

    Article  PubMed  Google Scholar 

  33. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE . Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 2012; 59: 2142–2154.

    Article  PubMed  Google Scholar 

  34. Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness VS Jr . Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 1998; 8: 372–384.

    Article  CAS  PubMed  Google Scholar 

  35. Craddock RC, James GA, Holtzheimer PE III, Hu XP, Mayberg HS . A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 2012; 33: 1914–1928.

    Article  PubMed  Google Scholar 

  36. Zang Y, Jiang T, Lu Y, He Y, Tian L . Regional homogeneity approach to fMRI data analysis. NeuroImage 2004; 22: 394–400.

    Article  PubMed  Google Scholar 

  37. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 2010; 30: 15034–15043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bullmore E, Sporns O . Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186–198.

    Article  CAS  PubMed  Google Scholar 

  39. Behzadi Y, Restom K, Liau J, Liu TT . A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 2007; 37: 90–101.

    Article  PubMed  Google Scholar 

  40. Mesulam MM . From sensation to cognition. Brain 1998; 121 (Part 6): 1013–1052.

    Article  PubMed  Google Scholar 

  41. Stark DE, Margulies DS, Shehzad ZE, Reiss P, Kelly AM, Uddin LQ et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci 2008; 28: 13754–13764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cherkassky VL, Kana RK, Keller TA, Just MA . Functional connectivity in a baseline resting-state network in autism. NeuroReport 2006; 17: 1687–1690.

    Article  PubMed  Google Scholar 

  43. Weng SJ, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C et al. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res 2010; 1313: 202–214.

    Article  CAS  PubMed  Google Scholar 

  44. Jones TB, Bandettini PA, Kenworthy L, Case LK, Milleville SC, Martin A et al. Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. NeuroImage 2010; 49: 401–414.

    Article  PubMed  Google Scholar 

  45. Yan C, Yu-Feng Z . DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI. Front Syst Neurosci 2010; 4: 13.

    Google Scholar 

  46. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 2002; 15: 870–878.

    Article  PubMed  Google Scholar 

  47. Van Dijk KR, Sabuncu MR, Buckner RL . The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 2012; 59: 431–438.

    Article  PubMed  Google Scholar 

  48. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage 2012; 60: 623–632.

    Article  PubMed  Google Scholar 

  49. Yan C, Cheung B, Kelly C, Colcombe S, Craddock C, Di Martino A et al. Comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage 2013; 76: 183–201.

    Article  PubMed  Google Scholar 

  50. Gotham K, Pickles A, Lord C . Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord 2009; 39: 693–705.

    Article  PubMed  Google Scholar 

  51. Just MA, Keller TA, Malave VL, Kana RK, Varma S . Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 2012; 36: 1292–1313.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA et al. Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 2011; 69: 847–856.

    Article  PubMed  Google Scholar 

  53. Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry 2000; 57: 331–340.

    Article  CAS  PubMed  Google Scholar 

  54. Kaiser MD, Hudac CM, Shultz S, Lee SM, Cheung C, Berken AM et al. Neural signatures of autism. Proc Natl Acad Sci USA 2010; 107: 21223–21228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lewis JD, Theilmann RJ, Fonov V, Bellec P, Lincoln A, Evans AC et al. Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity. Hum Brain Mapp 2013 doi:10.1002/hbm.22018 (e-pub ahead of print).

  56. Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S et al. Corpus callosum volume in children with autism. Psychiatry Res 2009; 174: 57–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Piven J, Bailey J, Ranson BJ, Arndt S . An MRI study of the corpus callosum in autism. Am J Psychiatry 1997; 154: 1051–1056.

    Article  CAS  PubMed  Google Scholar 

  58. Cheon KA, Kim YS, Oh SH, Park SY, Yoon HW, Herrington J et al. Involvement of the anterior thalamic radiation in boys with high functioning autism spectrum disorders: a diffusion tensor imaging study. Brain Res 2011; 1417: 77–86.

    Article  CAS  PubMed  Google Scholar 

  59. Shukla DK, Keehn B, Lincoln AJ, Muller RA . White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 2010; 49: 1269–1278, 1278 and 1261–1262.

    PubMed  PubMed Central  Google Scholar 

  60. Hong S, Ke X, Tang T, Hang Y, Chu K, Huang H et al. Detecting abnormalities of corpus callosum connectivity in autism using magnetic resonance imaging and diffusion tensor tractography. Psychiatry Res 2011; 194: 333–339.

    Article  PubMed  Google Scholar 

  61. Alexander AL, Lee JE, Lazar M, Boudos R, Dubray MB, Oakes TR et al. Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 2007; 34: 61–73.

    Article  PubMed  Google Scholar 

  62. Banich MT . The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 1998; 36: 128–157.

    Article  CAS  PubMed  Google Scholar 

  63. Minshew NJ, Goldstein G, Siegel DJ . Neuropsychologic functioning in autism: profile of a complex information processing disorder. J Int Neuropsychol Soc 1997; 3: 303–316.

    CAS  PubMed  Google Scholar 

  64. Uddin LQ, Menon V . The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev 2009; 33: 1198–1203.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL et al. Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 2011; 32: 1013–1028.

    Article  PubMed  Google Scholar 

  66. Di Martino A, Shehzad Z, Kelly C, Roy AK, Gee DG, Uddin LQ et al. Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. Am J Psychiatry 2009; 166: 891–899.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kennedy DP, Courchesne E . Functional abnormalities of the default network during self- and other-reflection in autism. Soc Cogn Affect Neurosci 2008; 3: 177–190.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kennedy DP, Courchesne E . The intrinsic functional organization of the brain is altered in autism. NeuroImage 2008; 39: 1877–1885.

    Article  PubMed  Google Scholar 

  69. Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP . Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 2009; 65: 63–74.

    PubMed  Google Scholar 

  70. Mizuno A, Villalobos ME, Davies MM, Dahl BC, Muller RA . Partially enhanced thalamocortical functional connectivity in autism. Brain Res 2006; 1104: 160–174.

    Article  CAS  PubMed  Google Scholar 

  71. Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ et al. A shift to randomness of brain oscillations in people with autism. Biol Psychiatry 2010; 68: 1092–1099.

    Article  PubMed  Google Scholar 

  72. Dinstein I, Heeger DJ, Lorenzi L, Minshew NJ, Malach R, Behrmann M . Unreliable evoked responses in autism. Neuron 2012; 75: 981–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Supekar K, Musen M, Menon V . Development of large-scale functional brain networks in children. PLoS Biol 2009; 7: e1000157.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Redcay E, Courchesne E . Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2–3-year-old children with autism spectrum disorder. Biol Psychiatry 2008; 64: 589–598.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hall D, Huerta MF, McAuliffe MJ, Farber GK . Sharing heterogeneous data: the national database for autism research. Neuroinformatics 2012; 10: 331–339.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the numerous contributors at each site (see Supplementary Table 2 and http://fcon_1000.projects.nitrc.org/indi/abide/), particularly Drs Marlene Behrmann and Leonardo Cerliani for their efforts in the collection, organization and sharing of their data sets; the NITRC (http://www.nitrc.org) for providing the data sharing platform for the ABIDE initiative as well as the other informatics databases for providing additional platforms (see http://fcon_1000.projects.nitrc.org/indi/abide). We also thank Ranjit Khanuja and Sharad Sikka for programming support; Dr R Cameron Craddock for invaluable suggestions regarding data analysis, as well as oversight of the development of the Configurable Pipeline for the Analysis of Connectomes, and Drs Zhen Yang and Clare Kelly for suggestions on earlier versions of this manuscript. Support for ABIDE coordination and data aggregation was partially provided by NIMH (K23MH087770, R03MH09632 and BRAINSRO1MH094639-01), the Leon Levy Foundation and by gifts from Joseph P Healey and the Stavros Niarchos Foundation. Support for data collection at each site was provided by NIH (DC011095, MH084164, K01MH092288-Stanford; HD55748, KO1MH081191, MH67924-Pitt; K08MH092697, P50MH60450, R01NS34783, R01MH080826, T32DC008553-USM; K23MH087770, R01HD065282, R01MH081218, R21MH084126-NYU; MH066496, R21MH079871, U19HD035482-UM1&UM2; R00MH091238, R01MH086654, R01MH096773-OHSU; R01MH081023-SDSU; 1R01HD06528001-UCLA1 and -UCLA2; K01MH071284-Yale; R01MH080721; K99/R00MH094409-Caltech), Autism Speaks (KKI, NYU, Olin, UM1 and 2, Pitt, USM, Yale), NINDS (R01NS048527; KKI), NICHD (Yale) NICHD (P50 HD055784; UCLA1 and 2), NICHD/NIDCD (P01/U19; CMU) the Simons Foundation (OHSU, Yale, Caltech, CMU), the Belgian Interuniversity Attraction Poles Grant (P6/29; Leuven 1 and 2), Ben B and Iris M Margolis Foundation (USM), European Commission, Marie Curie Excellence Grant (MEXT-CT-2005-023253; SBL), Flanders Fund for Scientific Research (1841313N, G.0354.06, G.0758.10; and post-doc grant; Leuven 1 and 2), Hartford Hospital (Olin), John Merck Scholars Fund (Yale), Kyulan Family Foundation (Trinity), Michigan Institute for Clinical and Health Research (MICHR) Pre-doctoral Fellowship (UM1 and 2), The Meath Foundation, Adelaide & Meath Hospital, Dublin Incorporating the National Children’s Hospital (AMNCH; Trinity), National Initiative for Brain and Cognition NIHC HCMI (056-13-014, 056-13-017; SBL), NWO (051.07.003, 452-04-305, 400-08-089; SBL) and Netherlands Brain Foundation (KS 2010(1)-29; SBL), NRSA Pre-doctoral Fellowship (F31DC010143; USM), Research Council of the University of Leuven (Leuven 1 and 2), Singer Foundation and Stanford Institute for Neuro-Innovations and Translational Neurosciences (Stanford), Leon Levy Foundation (NYU), Stavros Niarchos Foundation (NYU), UCLA Autism Center of Excellence (UCLA1 and 2), Autism Science Foundation (Yale) and University of Utah Multidisciplinary Research Seed Grant (USM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Di Martino or M P Milham.

Ethics declarations

Competing interests

Catherine Lord receives royalties from the publication of the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Martino, A., Yan, CG., Li, Q. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19, 659–667 (2014). https://doi.org/10.1038/mp.2013.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.78

Keywords

This article is cited by

Search

Quick links