Skip to main content

Advertisement

Log in

EEG based brain source localization comparison of sLORETA and eLORETA

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tudor M, Tudor L, Tudor KI (2005) Hans Berger (1873–1941-the history of electroencephalography). Acta Med Croatica: časopis Hravatske akademije medicinskih znanosti 59(4):307–313 (PubMed Publications, USA)

    Google Scholar 

  2. Sanei S (2007) EEG signal processing. Wiley, UK. ISBN 978-0-470-02581-9

    Book  Google Scholar 

  3. Wendel K, Väisänen O, Malmivuo J, Gencer NG, Vanrumste B, Durka P, Magjarević R, Supek S, Pascu ML, Fontenelle H, Grave de Peralta Menendez R (2009) EEG/MEG source imaging: methods, challenges, and open issues. Comput Intell Neurosci 1:1–12

    Article  Google Scholar 

  4. Jatoi MA, Kamel N, Malik AS, Faye I, Begum T (2014) A survey of methods used for source localization using EEG signals. Biomed Signal Process Control 11:42–52. doi:10.1016/j.bspc.2014.01.009 (Elsevier)

    Article  Google Scholar 

  5. Javed E, Faye I, Malik AS (2013) Reduction of ballistocardiogram artifact using EMD-AF. In: Lee M, Hirose A, Hou Z-G, Kil RM (eds) Neural information processing. Springer, Berlin Heidelberg, pp 533–540

    Chapter  Google Scholar 

  6. Javed E, Faye I, Malik A. S., and Abdullah J. M. Reference-free reduction of ballistocardiogram artifact from EEG data using EMD-PCA, in 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), 2014, pp. 1–6

  7. Soomro, M.H.; Badruddin, N.; Yusoff, M.Z.; Jatoi, M.A, Automatic eye-blink artifact removal method based on EMD-CCA, Complex Medical Engineering (CME), 2013 ICME International Conference on, pp 186–190, 25–28 May 2013 doi: 10.1109/ICCME.2013.6548236

  8. Zhukov, L.; Weinstein, D.; Johnson, C., “Independent component analysis for EEG source localization, Engineering in Medicine and Biology Magazine, IEEE, vol. 19 (3), pp 87–96, May–June 2000 doi: 10.1109/51.844386

  9. Jatoi, M.A; Kamel, N.; Malik, AS.; Faye, I; Begum, T. Representing EEG source localization using Finite Element Method, Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on, pp 168–172, Nov. 29–Dec. 1 2013 doi: 10.1109/ICCSCE.2013.6719953

  10. Tarantola (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, US. ISBN 0-89871-572-5

    Book  Google Scholar 

  11. Pascual-Marqui RD (2005) Theory of the EEG Inverse Problem. In: Tong S, Thakor NV (eds) Quantitative EEG Analysis: Methods and Clinical Applications, vol 5. Artech House, Boston, US, pp 121–140

    Google Scholar 

  12. Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Tech. Rep. TKK-F-A559, Helsinki University of Technology, Espoo, 1984

  13. Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45:1342–1354

    Article  CAS  PubMed  Google Scholar 

  14. Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47(2):332–340

    Article  Google Scholar 

  15. Gorodnitsky IF, George JS, Rao BD (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol 95:231–251

    Article  CAS  PubMed  Google Scholar 

  16. Song CY, Wu Q, Zhuang TG, Hybrid weighted minimum norm method a new method based LORETA to solve EEG inverse problem, Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pp 1079–1082, 17–18 Jan. 2006 doi: 10.1109/IEMBS.2005.1616606

  17. Khemakhem R, Ben Hamida A, Ahmed-taleb A, Derambure P, New hybrid method for the 3D reconstruction of neuronal activity in the brain, in 15th International Conference on Systems, Signals and Image Processing, 2008, IWSSIP 2008, pp 405–408, June 25–28, 2008

  18. He Sheng Liu, Fusheng Yang, Xiaorong Gao, Shangkai Gao, Shrinking LORETA-FOCUSS: a recursive approach to estimating high spatial resolution electrical activity in the brain, Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, pp 545–548, 20–22 March 2003 doi: 10.1109/CNE.2003.1196884

  19. Ebersole JS, EEG voltage topography and dipole source modeling of epileptiform potentials. Lippincott Williams and Wilkins, Philadelphia, pp 732–752

  20. Pascual RD et al (2002) Standardized low resolution brain electromagnetic tomography (sLORETA) technical details. Methods Find Exp Clin Pharmacol 24D:5–12

    Google Scholar 

  21. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high resolution imaging of cortical activity. Neuron 26:66–67

    Article  Google Scholar 

  22. Pascual-Marqui RD (2007) Discrete, 3D distributed linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization, arXiv: 0710.3341[math-ph], 2007-October-17

  23. http://www.unizh.ch/keyinst. Accessed June 2014

Download references

Acknowledgments

The authors are thankful to Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia for providing necessary facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munsif Ali Jatoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoi, M.A., Kamel, N., Malik, A.S. et al. EEG based brain source localization comparison of sLORETA and eLORETA. Australas Phys Eng Sci Med 37, 713–721 (2014). https://doi.org/10.1007/s13246-014-0308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0308-3

Keywords

Navigation