Skip to main content

Advertisement

Log in

The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2016

Abstract

Protein kinases are critical modulators of a variety of intracellular and extracellular signal transduction pathways, and abnormal phosphorylation events can contribute to disease progression in a variety of diseases. As a result, protein kinases have emerged as important new drug targets for small molecule therapeutics. The mitogen-activated protein kinase (MAPK) signaling pathway transmits signals from the cell membrane to the nucleus in response to a variety of different stimuli. Because this pathway controls a broad spectrum of cellular processes, including growth, inflammation, and stress responses, it is accepted as a therapeutic target for cancer and peripheral inflammatory disorders. There is also increasing evidence that MAPK is an important regulator of ischemic and hemorrhagic cerebral vascular disease, raising the possibility that it might be a drug discovery target for stroke. In this review, we discuss the MAPK signaling pathway in association with its activation in stroke-induced brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahnstedt H, Säveland H, Nilsson O, Edvinsson L (2011) Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway. BMC Neurosci 12:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansar S, Maddahi A, Edvinsson L (2011) Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage. BMC Neurosci 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42(6):1781–1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu R, Bagley JH, Di C, Friedman AH, Adamson C (2012) Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 32(4):E8

    Article  PubMed  Google Scholar 

  • Bas DB, Abdelmoaty S, Sandor K, Codeluppi S, Fitzsimmons B, Steinauer J, Hua XY, Yaksh TL, Svensson CI (2015) Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 19(2):260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beg SA, Hansen-Schwartz JA, Vikman PJ, Xu CB, Edvinsson LI (2006) ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ETB and 5-HT1B receptor upregulation after subarachnoid hemorrhage in rat. J Cereb Blood Flow Metab 26(6):846–856

    Article  CAS  PubMed  Google Scholar 

  • Borders AS, de Almeida L, Van Eldik LJ, Watterson DM (2008) The p38αmitogen-actibated protein kinase as a central nervous system drug discovery target. BMC Neurosci 9(Suppl 2):S12

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Cho GS, Ju C, Wang SL, Ryu JH, Shin CY, Kim HS, Nam KW, Jalin AMAA, Sun W, Choi IY, Kim WK (2011) Activated microglia are less vulnerable to hemin toxicity due to nitric oxide-dependent inhibition of JNK and p38 MAPK activation. J Immunol 187(3):1314–1321

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64(2):328–363

    Article  CAS  PubMed  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG, Arumugam TV (2014) Evidence that neuronal notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res 1586:193–202

    Article  CAS  PubMed  Google Scholar 

  • Choudhury G, Ryou MG, Poteet E, Wen Y, He R, Sun F, Yuan F, Jin K, Yang SH (2014) Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res 1551:45–58

    Article  PubMed Central  Google Scholar 

  • Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M, Richardson JC (2006) MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem 281(33):23658–23667

    Article  CAS  PubMed  Google Scholar 

  • Edelmayer RM, Brederson JD, Jarvis MF, Bitner RS (2014) Biochemical and pharmacological assessment of MAP-kinase signaling along pain pathways in experimental rodent models: a potential tool for the discovery of novel antinociceptive therapeutics. Biochem Pharmacol 87(3):390–398

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Wiesnet M, Renz D, Schaper W (2005) H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 84(7):687–697

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Katsuki H, Kume T, Akaike A (2006) Thrombin-induced delayed injury involves multiple and distinct signaling pathways in the cerebral cortex and the striatum in organotypic slice cultures. Neurobiol Dis 22(1):130–142

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T, Akaike A (2007) Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144(2):694–701

    Article  CAS  PubMed  Google Scholar 

  • Gladbach A, van Eersel J, Bi M, Ke YD, Ittner LM (2014) ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke. J Neural Transm 121(5):543–547

    CAS  PubMed  Google Scholar 

  • González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756

    Article  PubMed  Google Scholar 

  • Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Åkerström B, Ley D (2013) Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation 10:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurgis FM, Ziaziaris W, Munoz L (2014) Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol 85(2):345–356

    Article  PubMed  Google Scholar 

  • He Q, Bao L, Zimering J, Zan K, Zhang Z, Shi H, Zu J, Yang X, Hua F, Ye X, Cui G (2015) The protective role of (−)-epigallocatechin-3-gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. Neuroreport 26(7):416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Wan J, Chen Y, Wang ZW, Hui L, Li Y, Xu DW, Zhou WK (2013) Inhibitory effects of p38 inhibitor against mitochondrial dysfunction in the early brain injury after subarachnoid hemorrhage in mice. Brain Res 1517:133–140

    Article  CAS  PubMed  Google Scholar 

  • Kaminska B, Gozdz A, Zawadzka M, Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec 292(12):1902–1913

    Article  CAS  Google Scholar 

  • Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA, Davis RJ (2011) TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 25(19):2069–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G (2014) Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinig TJ, Vink R (2009) Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 22(3):294–301

    Article  PubMed  Google Scholar 

  • Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-αbiosynthesis. Nat Cell Biol 1(2):94–97

    Article  CAS  PubMed  Google Scholar 

  • Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37(7):1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Krementsov DN, Thornton TM, Teuscher C, Rincon M (2013) The emerging role of p38 mitogen-activated protein kinase in multiple sclerosis and its models. Mol Cell Biol 33(19):3728–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92(2):689–737

    Article  CAS  PubMed  Google Scholar 

  • Lei YY, Wang WJ, Mei JH, Wang CL (2014) Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev 15(20):8539–8548

    Article  PubMed  Google Scholar 

  • Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW (2012) Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 9:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76(13):6689–6700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Huang B, Khatibi N, Rolland W II, Suzuki H, Zhang JH, Tang J (2011) PDGFR-⍺ inhibition preserves blood–brain barrier after intracerebral hemorrhage. Ann Neurol 70(6):920–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddahi A, Ansar S, Chen Q, Edvinsson L (2011a) Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31(1):144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddahi A, Edvinsson L (2010) Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation 7:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddahi A, Kruse LS, Chen QW, Edvinsson L (2011b) The role of tumor necrosis factor-α and TNF-α receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation 8(1):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddahi A, Povlsen GK, Edvinsson L (2012) Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. J Neuroinflammation 9:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21(19):6461–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4(3):225–236

    Article  CAS  PubMed  Google Scholar 

  • Miller F, Fenart L, Landry V, Coisne C, Cecchelli R, Dehouck MP, Scherrer VB (2005) The MAP kinase pathway mediates transcytosis induced by TNF-αin an in vitro blood–brain barrier model. Eur J Neurosci 22(4):835–844

    Article  PubMed  Google Scholar 

  • Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 8:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Munshi A, Ramesh R (2013) Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4(9–10):401–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Nito C, Kamada H, Endo H, Niizuma K, Myer DJ, Chan PH (2008) Role of the p38 mitogen-activated protein kinase/cytosolic phospholipase A2 signaling pathway in blood–brain barrier disruption after focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 28(10):1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi M, Katsuki H, Fujimoto S, Takagi M, Kume T, Akaike A (2007) Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol 206(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi M, Katsuki H, Izumi Y, Kume T, Takada-Takatori Y, Akaike A (2010) Mitogen-activated protein kinases support survival of activated microglia that mediate thrombin-induced striatal injury in organotypic slice culture. J Neurosci Res 88(10):2155–2164

    Article  CAS  PubMed  Google Scholar 

  • Pan YX, Chen KF, Lin YX, Wu W, Zhou XM, Zhang XS, Zhang X, Shi JX (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-α. J Clin Neurosci 20(5):726–730

    Article  CAS  PubMed  Google Scholar 

  • Piao CS, Kim JB, Han PL, Lee JK (2003) Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73(4):537–544

    Article  CAS  PubMed  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  • Ruhul Amin AR, Senga T, Oo ML, Thant AA, Hamaguchi M (2003) Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1beta: a role for the dual signalling pathways, Akt and erk. Genes Cells 8(6):515–523

    Article  CAS  PubMed  Google Scholar 

  • Sabio G, Davis RJ (2014) TNF and MAP kinase signalling pathways. Semin Immunol 26(3):237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikman P, Ansar S, Henriksson M, Stenman E, Edvinsson L (2007) Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Exp Brain Res 183(4):499–510

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. Cereb Blood Flow Metab 27:894–908

    CAS  Google Scholar 

  • Wang X, Xu L, Wang H, Young PR, Gaestel M, Feuerstein GZ (2002) Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 deficiency protects brain from ischemic injury in mice. J Biol Chem 277(46):43968–43972

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW (2013) Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 44(9):2545–2552

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL, Yang QW (2014) Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 75(6):876–889

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Wu DC, Huang FP, Yang GY (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Ma Q, Khatibi N, Chen W, Sozen T, Cheng Q, Tang J (2010) Ac-YVAD-CMK decreases blood–brain barrier degradation by inhibiting caspase-1 activation of interleukin-1βin intracerebral hemorrhage mouse model. Transl Stroke Res 1(1):57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Hsieh HL, Jou MJ, Yang CM (2004) Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1β-induced marix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90(6):1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Chakrabarti S (2015) ERK5 mediated signalling in diabetic retinopathy. Med Hypothesis Discov Innov Ophthalmol 4:17–26

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Kim SC, Yu T, Yi TY, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2014:352371

    Google Scholar 

  • Zhang BF, Song JN, Ma XD, Zhao YL, Liu ZW, Sun P, Li DD, Pang HG, Huang TQ (2015) Etanercept alleviates early brain injury following experimental subarachnoid hemorrhage and the possible role of tumor necrosis factor-α and c-Jun N-terminal kinase pathway. Neurochem Res 40(3):591–599

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao XD, Shi JX, Yin HX (2011) Inhibition of the p38 mitogen-activated protein kinase (MAPK) pathway attenuates cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Ann Clin Lab Sci 41(3):244–250

    CAS  PubMed  Google Scholar 

  • Zhou Y, Wang Y, Wang J, Stetler R, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxian Nan.

Ethics declarations

Conflict Interests

The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Nan, G. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. J Mol Neurosci 59, 90–98 (2016). https://doi.org/10.1007/s12031-016-0717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0717-8

Keywords

Navigation