Skip to main content
Log in

High-mobility group box 1 (HMGB1) as a master regulator of innate immunity

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Damage-associated molecular patterns (DAMPs) comprise intracellular molecules characterized by the ability to reach the extracellular environment, where they prompt inflammation and tissue repair. The high-mobility box group 1 (HMGB1) protein is a prototypic DAMP and is highly conserved in evolution. HMGB1 is released upon cell and tissue necrosis and is actively produced by immune cells. Evidence suggests that HMGB1 acts as a key molecule of innate immunity, downstream of persistent tissue injury, orchestrating inflammation, stem cell recruitment/activation, and eventual tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdulahad DA, Westra J, Limburg PC, Kallenberg CG, Bijl M (2010) HMGB1 in systemic lupus erythematosus: its role in cutaneous lesions development. Autoimmun Rev 9:661-665

    Article  CAS  PubMed  Google Scholar 

  • Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M et al (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115:1267–1274

    CAS  PubMed  Google Scholar 

  • Andersson U, Harris HE (2010) The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta 1799:141–148

    CAS  PubMed  Google Scholar 

  • Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  CAS  PubMed  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al (2007a) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al (2007b) The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220:47–59

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392

    Article  CAS  PubMed  Google Scholar 

  • Bell CW, Jiang W, Reich CF 3rd, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME (2009) HMGB1 loves company. J Leukoc Biol 86:573–576

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME, Manfredi A (2004) Chromatin and cell death. Biochim Biophys Acta 1677:181–186

    CAS  PubMed  Google Scholar 

  • Bianchi ME, Manfredi AA (2007) High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220:35–46

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME, Manfredi AA (2009) Immunology. Dangers in and out. Science 323:1683–1684

    Article  CAS  PubMed  Google Scholar 

  • Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560

    Article  CAS  PubMed  Google Scholar 

  • Bondanza A, Zimmermann VS, Dell'Antonio G, Dal Cin E, Balestrieri G, Tincani A et al (2004) Requirement of dying cells and environmental adjuvants for the induction of autoimmunity. Arthritis Rheum 50:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Bondanza A, Rovere-Querini P, Zimmermann VS, Balestrieri G, Tincani A, Sabbadini MG et al (2007) Requirement for dendritic cells in the establishment of anti-phospholipid antibodies. Autoimmunity 40:302–306

    Article  CAS  PubMed  Google Scholar 

  • Campana L, Bosurgi L, Rovere-Querini P (2008) HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 20:518–523

    Article  CAS  PubMed  Google Scholar 

  • Campana L, Bosurgi L, Bianchi ME, Manfredi AA, Rovere-Querini P (2009) Requirement of HMGB1 for stromal cell-derived factor-1/CXCL12-dependent migration of macrophages and dendritic cells. J Leukoc Biol 86:609–615

    Article  CAS  PubMed  Google Scholar 

  • Carta S, Castellani P, Delfino L, Tassi S, Vene R, Rubartelli A (2009) DAMPs and inflammatory processes: the role of redox in the different outcomes. J Leukoc Biol 86:549–555

    Article  CAS  PubMed  Google Scholar 

  • Catena R, Escoffier E, Caron C, Khochbin S, Martianov I, Davidson I (2009) HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod 80:358–366

    Article  CAS  PubMed  Google Scholar 

  • Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P et al (2007) Highmobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204–212

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D, Lim JB (2009) Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 7:38

    Article  PubMed  CAS  Google Scholar 

  • Crikis S, Zhang XM, Dezfouli S, Dwyer KM, Murray-Segal LM, Salvaris E et al (2010) Antiinflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am J Transplant 10:242–250

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP et al (2005a) Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 174:7506–7515

    CAS  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P (2005b) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P (2005c) Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 25:25

    Google Scholar 

  • Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P (2007) The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 81:84–91

    Article  CAS  PubMed  Google Scholar 

  • Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME et al (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Germani A, Limana F, Capogrossi MC (2007) Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. J Leukoc Biol 81:41–45

    Article  CAS  PubMed  Google Scholar 

  • Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE (2006) Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312:3526–3538

    Article  CAS  PubMed  Google Scholar 

  • Hreggvidsdottir HS, Ostberg T, Wahamaa H, Schierbeck H, Aveberger AC, Klevenvall L et al (2009) The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol 86:655–662

    Article  CAS  PubMed  Google Scholar 

  • Ito I, Fukazawa J, Yoshida M (2007) Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 282:16336–16344

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kawahara K, Okamoto K, Yamada S, Yasuda M, Imaizumi H et al (2008) Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28:1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G et al (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110:1970–1981

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13:11–16

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bell CW, Pisetsky DS (2007) The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J Immunol 178:6495–6503

    CAS  PubMed  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high mobility group box-1 protein. Immunity 29:21–32

    Article  CAS  PubMed  Google Scholar 

  • Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Muller S, Digilio G, Bonaldi T, Bianchi ME, Musco G (2004) The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxes. Biochemistry 43:11992–11997

    Article  CAS  PubMed  Google Scholar 

  • Kornblit B, Munthe-Fog L, Madsen HO, Strøm J, Vindeløv L, Garred P (2008) Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit Care 12:R83

    Article  PubMed  Google Scholar 

  • Kornblit B, Masmas T, Petersen SL, Madsen HO, Heilmann C, Schejbel L, Sengeløv H, Müller K, Garred P, Vindeløv L (2010) Association of HMGB1 polymorphisms with outcome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 16:239–252

    Article  CAS  PubMed  Google Scholar 

  • Koutsi A, Papapanagiotou A, Papavassiliou AG (2008) Thrombomodulin: from haemostasis to inflammation and tumourigenesis. Int J Biochem Cell Biol 40:1669–1673

    Article  CAS  PubMed  Google Scholar 

  • Krynetskaia NF, Phadke MS, Jadhav SH, Krynetskiy EY (2009) Chromatin-associated proteins HMGB1/2 and PDIA3 trigger cellular response to chemotherapy-induced DNA damage. Mol Cancer Ther 8:864–872

    Article  CAS  PubMed  Google Scholar 

  • Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190–198

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Kwon JH, Kim EH, Kim ES, Choi KY (2010) HMGB2 stabilizes p53 by interfering with E6/E6AP-mediated p53 degradation in human papillomavirus-positive HeLa cells. Cancer Lett 292:125–132

    Article  CAS  PubMed  Google Scholar 

  • Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X et al (2003) Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 9:37–45

    CAS  PubMed  Google Scholar 

  • Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97:e73–e83

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30:557–561

    Article  CAS  PubMed  Google Scholar 

  • Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E et al (2009) Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 85:779–787

    Article  CAS  PubMed  Google Scholar 

  • Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A et al (2009) Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J Immunol 183:5023–5031

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Deisseroth A, Rubartelli A (2007) Damage associated molecular pattern molecules. Clin Immunol 124:1–4

    Article  CAS  PubMed  Google Scholar 

  • Mahoney JA, Rosen A (2005) Apoptosis and autoimmunity. Curr Opin Immunol 17:583–588

    Article  CAS  PubMed  Google Scholar 

  • Manfredi AA, Rovere-Querini P (2010) The mitochondrion—a Trojan horse that kicks off inflammation? N Engl J Med 362:2132–2134

    Article  CAS  PubMed  Google Scholar 

  • Manfredi AA, Rovere-Querini P, Bottazzi B, Garlanda C, Mantovani A (2008a) Pentraxins, humoral innate immunity and tissue injury. Curr Opin Immunol 20:538–544

    Article  CAS  PubMed  Google Scholar 

  • Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, Monno A et al (2008b) Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol 180:2270–2275

    CAS  PubMed  Google Scholar 

  • Manfredi AA, Capobianco A, Bianchi ME, Rovere-Querini P (2009) Regulation of dendriticand T-cell fate by injury-associated endogenous signals. Crit Rev Immunol 29:69–86

    CAS  PubMed  Google Scholar 

  • Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM et al (2010) A causative role of Toll-like receptor 4 (TLR4) activation by high mobility group box 1 (HMGB1) protein in ictogenesis. Nat Med 16:413–419

    Article  CAS  PubMed  Google Scholar 

  • Marshak-Rothstein A, Rifkin IR (2007) Immunologically active autoantigens: the role of tolllike receptors in the development of chronic inflammatory disease. Annu Rev Immunol 25:419–441

    Article  CAS  PubMed  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  • Maugeri N, Rovere-Querini P, Baldini M, Sabbadini MG, Manfredi AA (2009) Translational mini-review series on immunology of vascular disease: mechanisms of vascular inflammation and remodelling in systemic vasculitis. Clin Exp Immunol 156:395–404

    Article  CAS  PubMed  Google Scholar 

  • Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B et al (2004) High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173:307–313

    CAS  PubMed  Google Scholar 

  • Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M (2010) TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 29:2242-2252

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A et al (2001) New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20:4337–4340

    Article  CAS  PubMed  Google Scholar 

  • Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255:332–343

    Article  CAS  PubMed  Google Scholar 

  • Munoz LE, Janko C, Grossmayer GE, Frey B, Voll RE, Kern P et al (2009) Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum 60:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010a) The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 6:280–289

    Article  PubMed  Google Scholar 

  • Munoz L, Lauber K, Schiller M, Manfredi AA, Herrmann M (2010b) Defective clearance of apoptotic cells—role in the etiology and pathogenesis of systemic autoimmunity. Nat Rev Rheumatol 6:280–289

    Article  PubMed  Google Scholar 

  • Nagato M, Okamoto K, Abe Y, Higure A, Yamaguchi K (2009) Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit Care Med 37:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  • Oh YJ, Youn JH, Ji Y, Lee SE, Lim KJ, Choi JE et al (2009) HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol 182:5800–5809

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365

    Article  CAS  PubMed  Google Scholar 

  • Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E et al (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Palumbo R, Sampaolesi M, De Marchis F, Tonlorenzi R, Colombetti S, Mondino A et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449

    Article  CAS  PubMed  Google Scholar 

  • Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB et al (2007) Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NFkappaB activation. J Cell Biol 179:33–40

    Article  CAS  PubMed  Google Scholar 

  • Palumbo R, De Marchis F, Pusterla T, Conti A, Alessio M, Bianchi ME (2009) Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukoc Biol 86:617–623

    Article  CAS  PubMed  Google Scholar 

  • Penzo M, Molteni R, Suda T, Samaniego S, Raucci A, Habiel DM et al (2010) Inhibitor of NF-kappa B kinases alpha and beta are both essential for high mobility group box 1-mediated chemotaxis. J Immunol 184:4497–4509

    Article  CAS  PubMed  Google Scholar 

  • Pisetsky DS (2010) HMGB1: a dangerous player in lupus pathogenesis. J Rheumatol 37:689–691

    Article  CAS  PubMed  Google Scholar 

  • Pisetsky DS, Fairhurst AM (2007) The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 40:281–284

    Article  CAS  PubMed  Google Scholar 

  • Pisetsky DS, Ronnblom L (2009) Systemic lupus erythematosus: a matter of life and death. Arthritis Rheum 60:1567–1570

    Article  PubMed  Google Scholar 

  • Pisetsky DS, Erlandsson-Harris H, Andersson U (2008) High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 10:209

    Article  PubMed  CAS  Google Scholar 

  • Pulendran B, Palucka K, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293:253–256

    Article  CAS  PubMed  Google Scholar 

  • Pusterla T, De Marchis F, Palumbo R, Bianchi ME (2009) High mobility group B2 is secreted by myeloid cells and has mitogenic and chemoattractant activities similar to high mobility group B1. Autoimmunity 42:308–310

    Article  CAS  PubMed  Google Scholar 

  • Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    Article  CAS  PubMed  Google Scholar 

  • Raucci A, Palumbo R, Bianchi ME (2007) HMGB1: a signal of necrosis. Autoimmunity 40:285–289

    Article  CAS  PubMed  Google Scholar 

  • Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799:164–170

    CAS  PubMed  Google Scholar 

  • Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126

    Article  CAS  PubMed  Google Scholar 

  • Rouhiainen A, Imai S, Rauvala H, Parkkinen J (2000) Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost 84:1087–1094

    CAS  PubMed  Google Scholar 

  • Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 81:49–58

    Article  CAS  PubMed  Google Scholar 

  • Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  CAS  PubMed  Google Scholar 

  • Rovere-Querini P, Castiglioni MT, Sabbadini MG, Manfredi AA (2007) Signals of cell death and tissue turnover during physiological pregnancy, pre-eclampsia, and autoimmunity. Autoimmunity 40:290–294

    Article  CAS  PubMed  Google Scholar 

  • Rubartelli A, Sitia R (2009) Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid Redox Signal 11:2621–2629

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  • Semino C, Angelini G, Poggi A, Rubartelli A (2005) NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106:609–616

    Article  CAS  PubMed  Google Scholar 

  • Sessa L, Bianchi ME (2007) The evolution of high mobility group box (HMGB) chromatin proteins in multicellular animals. Gene 387:133–140

    Article  CAS  PubMed  Google Scholar 

  • Sha Y, Zmijewski J, Xu Z, Abraham E (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180:2531–2537

    CAS  PubMed  Google Scholar 

  • Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122:3209–3213

    Article  CAS  PubMed  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  CAS  PubMed  Google Scholar 

  • Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J et al (2009) RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17

    Article  PubMed  CAS  Google Scholar 

  • Stros M (2010) HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 1799:101–113

    CAS  PubMed  Google Scholar 

  • Susa Y, Masuda Y, Imaizumi H, Namiki A (2009) Neutralization of receptor for advanced glycation end-products and high mobility group box-1 attenuates septic diaphragm dysfunction in rats with peritonitis. Crit Care Med 37:2619–2624

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE et al (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene (in press)

  • Taniguchi N, Carames B, Ronfani L, Ulmer U, Komiya S, Bianchi ME et al (2009) Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci USA 106:1181-1186

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  CAS  PubMed  Google Scholar 

  • Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT et al (2005) The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X et al (2007) HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204(12):2913–2923

    Article  CAS  PubMed  Google Scholar 

  • Ugrinova I, Pashev IG, Pasheva EA (2009) Nucleosome binding properties and core-modeling activities of native and in vivo acetylated HMGB-1 and HMGB-2 proteins. Biochemistry 48:6502–6507

    Article  CAS  PubMed  Google Scholar 

  • Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 28:28

    Google Scholar 

  • Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F et al (2008) Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 205:3007–3018

    Article  CAS  PubMed  Google Scholar 

  • Urbonaviciute V, Meister S, Furnrohr BG, Frey B, Guckel E, Schett G et al (2009) Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity 42:305–307

    Article  CAS  PubMed  Google Scholar 

  • Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  CAS  PubMed  Google Scholar 

  • Wixted WE, Kitson C, Colebrook JC, Roberts EJ, Fox SM, Kou JP et al (2010) A model to identify novel targets involved in oxidative stress-induced apoptosis in human lung epithelial cells by RNA interference. Toxicol In Vitro 24:310–318

    Article  CAS  PubMed  Google Scholar 

  • Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H et al (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462:99–103

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Tewary P, Rosa G de la, Wei F, Oppenheim JJ (2010) The alarmin functions of high-mobility group proteins. Biochim Biophys Acta 1799:157–163

    CAS  PubMed  Google Scholar 

  • Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J et al (2010) A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA 107:11942-11947

    Article  CAS  PubMed  Google Scholar 

  • Youn JH, Shin JS (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177:7889–7897

    CAS  PubMed  Google Scholar 

  • Youn JH, Oh YJ, Kim ES, Choi JE, Shin JS (2008) High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol 180:5067–5074

    CAS  PubMed  Google Scholar 

  • Yuk JM, Yang CS, Shin DM, Kim KK, Lee SK, Song YJ et al (2009) A dual regulatory role of apurinic/apyrimidinic endonuclease 1/redox factor-1 in HMGB1-induced inflammatory responses. Antioxid Redox Signal 11:575–588

    Article  CAS  PubMed  Google Scholar 

  • Zeh HJ 3rd, Lotze MT (2005) Addicted to death: invasive cancer and the immune response to unscheduled cell death. J Immunother 28:1–9

    Article  PubMed  Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratories is supported by the Ministero della Salute, by the AIRC (Associazione Italiana per la Ricerca sul Cancro) and by the MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo A. Manfredi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castiglioni, A., Canti, V., Rovere-Querini, P. et al. High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res 343, 189–199 (2011). https://doi.org/10.1007/s00441-010-1033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1033-1

Keywords

Navigation