Skip to main content
Log in

Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There is increasing interest in antipsychotics intended to manage positive symptoms via D2 receptor blockade and improve negative symptoms and cognitive deficits via 5-HT1A activation. Such a strategy reduces side-effects such as the extrapyramidal syndrome (EPS), weight gain, and autonomic disturbance liability.

Objective

This study aims to review pharmacological literature on compounds interacting at both 5-HT1A and D2 receptors (as well as at other receptors), including aripiprazole, perospirone, ziprasidone, bifeprunox, lurasidone and cariprazine, PF-217830, adoprazine, SSR181507, and F15063.

Methods

We examine data on in vitro binding and agonism and in vivo tests related to (1) positive symptoms (e.g., psychostimulant-induced hyperactivity or prepulse inhibition deficit), (2) negative symptoms (e.g., phencyclidine-induced social interaction deficits and cortical dopamine release), and (3) cognitive deficits (e.g., phencyclidine or scopolamine-induced memory deficits). EPS liability is assessed by measuring catalepsy and neuroendocrine impact by determining plasma prolactin, glucose, and corticosterone levels.

Results

Compounds possessing “balanced” 5-HT1A receptor agonism and D2 antagonism (or weak partial agonism) and, in some cases, combined with other beneficial properties, such as 5-HT2A receptor antagonism, are efficacious in a broad range of rodent pharmacological models yet have a lower propensity to elicit EPS or metabolic dysfunction.

Conclusions

Recent compounds exhibiting combined 5-HT1A/D2 properties may be effective in treating a broader range of symptoms of schizophrenia and be better tolerated than existing antipsychotics. Nevertheless, further investigations are necessary to evaluate recent compounds, notably in view of their differing levels of 5-HT1A affinity and efficacy, which can markedly influence activity and side-effect profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas A, Roth BL (2008) Pimavanserin tartrate: a 5-HT2A inverse agonist with potential for treating various neuropsychiatric disorders. Expert Opin Pharmacother 9:3251–3259

    PubMed  CAS  Google Scholar 

  • Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL (2009) Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacol (Berl) 205:119–128

    CAS  Google Scholar 

  • Abdul-Monim Z, Reynolds GP, Neill JC (2003) The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J Psychopharmacol 17:57–65

    PubMed  CAS  Google Scholar 

  • Abi-Dargham A (2004) Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol 7(Suppl 1):S1–S5

    PubMed  CAS  Google Scholar 

  • Aggernaes B, Glenthoj BY, Ebdrup BH, Rasmussen H, Lublin H, Oranje B (2010) Sensorimotor gating and habituation in antipsychotic-naive, first-episode schizophrenia patients before and after 6 months’ treatment with quetiapine. Int J Neuropsychopharmacol 13(10):1383–1395

    PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Malek-Hosseini M, Ghoreishi A, Raznahan M, Rezazadeh SA (2008) Effect of ritanserin, a 5HT2A/2 C antagonist, on negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32:1879–1883

    PubMed  CAS  Google Scholar 

  • Akimova E, Lanzenberger R, Kasper S (2009) The serotonin-1A receptor in anxiety disorders. Biol Psychiatry 66:627–635

    PubMed  CAS  Google Scholar 

  • Albert PR, Francois BL (2010) Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy. Front Neurosci 4:35

    PubMed  CAS  Google Scholar 

  • Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299

    PubMed  Google Scholar 

  • Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 31:106–112

    PubMed  CAS  Google Scholar 

  • Arnt J, Bang-Andersen B, Dias R, Bogesø KP (2008) Strategies or pharmacotherapy of schizophrenia. Drugs Future 33:777–791

    CAS  Google Scholar 

  • Assie MB, Koek W (1996) Effects of 5-HT1A receptor antagonists on hippocampal 5-hydroxytryptamine levels: (S)-WAY100135, but not WAY100635, has partial agonist properties. Eur J Pharmacol 304:15–21

    PubMed  CAS  Google Scholar 

  • Assie MB, Dominguez H, Consul-Denjean N, Newman-Tancredi A (2006) In vivo occupancy of dopamine D2 receptors by antipsychotic drugs and novel compounds in the mouse striatum and olfactory tubercles. Naunyn-Schmiedeberg’s Arch Pharmacol 373:441–450

    CAS  Google Scholar 

  • Assie MB, Carilla-Durand E, Bardin L, Maraval M, Aliaga M, Malfetes N, Barbara M, Newman-Tancredi A (2008) The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063. Eur J Pharmacol 592:160–166

    PubMed  CAS  Google Scholar 

  • Assié MB, Cosi C, Koek W (1997) 5-HT1A receptor agonist properties of the antipsychotic, nemonapride: comparison with bromerguride and clozapine. Eur J Pharmacol 334:141–147

    PubMed  Google Scholar 

  • Assié MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272

    PubMed  Google Scholar 

  • Assié MB, Mnie-Filali O, Ravailhe V, Benas C, Marien M, Betry C, Zimmer L, Haddjeri N, Newman-Tancredi A (2009) F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist, 5-HT1A receptor agonist and dopamine D4 receptor partial agonist properties: influence on neuronal firing and neurotransmitter release. Eur J Pharmacol 607:74–83

    PubMed  Google Scholar 

  • Auclair A, Newman-Tancredi A, Depoortere R (2006a) Comparative analysis of typical, atypical, and novel antipsychotics with preferential D2/D3 and 5-HT1A affinity in rodent models of cognitive flexibility and sensory gating: II The reversal learning task and PPI of the startle reflex. 25th Congress of International NeuroPsychopharmacology. Int J Neuropsychopharm, Chicago, pp P01.167

  • Auclair AL, Kleven MS, Besnard J, Depoortere R, Newman-Tancredi A (2006b) Actions of novel antipsychotic agents on apomorphine-induced PPI disruption: influence of combined serotonin 5-HT1A receptor activation and dopamine D2 receptor blockade. Neuropsychopharmacology 31:1900–1909

    PubMed  CAS  Google Scholar 

  • Auclair AL, Galinier A, Besnard J, Newman-Tancredi A, Depoortere R (2007) Putative antipsychotics with pronounced agonism at serotonin 5-HT1A and partial agonist activity at dopamine D2 receptors disrupt basal PPI of the startle reflex in rats. Psychopharmacol Berl 193:45–54

    CAS  Google Scholar 

  • Auclair AL, Galinier A, Besnard J, Newman-Tancredi ARD (2008) Effects of antipsychotics on working memory and attentional performance in Delayed non-matching to position test and in 5 choice serial reaction time task. Society for Neuroscience 38th Annual Meeting, Washington D.C., pp 155.10

  • Auclair AL, Kleven MS, Barret-Grevoz C, Barreto M, Newman-Tancredi A, Depoortere R (2009) Differences among conventional, atypical and novel putative D2/5-HT1A antipsychotics on catalepsy-associated behaviour in cynomolgus monkeys. Behav Brain Res 203:288–295

    PubMed  CAS  Google Scholar 

  • Auclair AL, Cathala A, Sarrazin F, Depoortere R, Piazza PV, Newman-Tancredi A, Spampinato U (2010) The central serotonin(2B) receptor: a new pharmacological target to modulate the mesoaccumbens dopaminergic pathway activity. J Neurochem 114(5):1323–1332

    PubMed  CAS  Google Scholar 

  • Bantick RA, Deakin JF, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15:37–46

    PubMed  CAS  Google Scholar 

  • Bantick RA, Montgomery AJ, Bench CJ, Choudhry T, Malek N, McKenna PJ, Quested DJ, Deakin JF, Grasby PM (2004a) A positron emission tomography study of the 5-HT1A receptor in schizophrenia and during clozapine treatment. J Psychopharmacol 18:346–354

    PubMed  CAS  Google Scholar 

  • Bantick RA, Rabiner EA, Hirani E, de Vries MH, Hume SP, Grasby PM (2004b) Occupancy of agonist drugs at the 5-HT1A receptor. Neuropsychopharmacology 29:847–859

    PubMed  CAS  Google Scholar 

  • Barak S, Weiner I (2011) The M1/M4 preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia. Int J Neuropsychopharmacol 1–14 (in press)

  • Bardin L, Kleven MS, Barret-Grevoz C, Depoortere R, Newman-Tancredi A (2006a) Antipsychotic-like vs cataleptogenic actions in mice of novel antipsychotics having D2 antagonist and 5-HT1A agonist properties. Neuropsychopharmacology 31:1869–1879

    PubMed  CAS  Google Scholar 

  • Bardin L, Newman-Tancredi A, Depoortère R (2006b) Comparative analysis of typical, atypical, and novel antipsychotics with preferential D2/D3 and 5-HT1A affinity in rodent models of cognition and memory deficits: I The hole-board and the social recognition tests. 25th Congress of International NeuroPsychopharmacology. Int J Neuropsychopharm Chicago, pp P01.166

  • Bardin L, Auclair A, Kleven MS, Prinssen EP, Koek W, Newman-Tancredi A, Depoortere R (2007) Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics. Behav Pharmacol 18:103–118

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  • Bartoszyk GD, Roos C, Ziegler H (1996) 5-HT1A receptors are not involved in clozapine’s lack of cataleptogenic potential. Neuropharmacology 35:1645–1646

    PubMed  CAS  Google Scholar 

  • Beique JC, Campbell B, Perring P, Hamblin MW, Walker P, Mladenovic L, Andrade R (2004) Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24:4807–4817

    PubMed  CAS  Google Scholar 

  • Benkert O, Muller-Siecheneder F, Wetzel H (1995) Dopamine agonists in schizophrenia: a review. Eur Neuropsychopharmacol 5(Suppl):43–53

    PubMed  CAS  Google Scholar 

  • Berends AC, Luiten PG, Nyakas C (2005) A review of the neuroprotective properties of the 5-HT1A receptor agonist repinotan HCl (BAYx3702) in ischemic stroke. CNS Drug Rev 11:379–402

    PubMed  CAS  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    PubMed  CAS  Google Scholar 

  • Bortolozzi A, Diaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacol Berl 191:745–758

    CAS  Google Scholar 

  • Bortolozzi A, Masana M, Diaz-Mataix L, Cortes R, Scorza MC, Gingrich JA, Toth M, Artigas F (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT1A receptors but not 5-HT2A receptors. Int J Neuropsychopharmacol 13(10):1299–1314

    PubMed  CAS  Google Scholar 

  • Boulay D, Depoortere R, Louis C, Perrault G, Griebel G, Soubrie P (2004) SSR181507, a putative atypical antipsychotic with dopamine D2 antagonist and 5-HT1A agonist activities: improvement of social interaction deficits induced by phencyclidine in rats. Neuropharmacology 46:1121–1129

    PubMed  CAS  Google Scholar 

  • Boulay D, Bergis O, Avenet P, Griebel G (2010) The glycine transporter-1 inhibitor SSR103800 displays a selective and specific antipsychotic-like profile in normal and transgenic mice. Neuropsychopharmacology 35:416–427

    PubMed  CAS  Google Scholar 

  • Bradford AM, Savage KM, Jones DN, Kalinichev M (2010) Validation and pharmacological characterisation of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacol Berl 212:155–170

    CAS  Google Scholar 

  • Bridges TM, LeBois EP, Hopkins CR, Wood MR, Jones CK, Conn PJ, Lindsley CW (2010) The antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect 23:229–240

    PubMed  CAS  Google Scholar 

  • Bristow MR, Murphy GA, Krause-Steinrauf H, Anderson JL, Carlquist JF, Thaneemit-Chen S, Krishnan V, Abraham WT, Lowes BD, Port JD, Davis GW, Lazzeroni LC, Robertson AD, Lavori PW, Liggett SB (2010) An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail 3:21–28

    PubMed  CAS  Google Scholar 

  • Bruins Slot LA, Kleven MS, Newman-Tancredi A (2005) Effects of novel antipsychotics with mixed D(2) antagonist/5-HT(1A) agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology 49:996–1006

    PubMed  CAS  Google Scholar 

  • Bruins Slot LA, De Vries L, Newman-Tancredi A, Cussac D (2006) Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D2S receptors coupled to extracellular signal-regulated kinase. Eur J Pharmacol 534:63–70

    PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Harrison PJ (1997) [3 H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3 H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Int 30:565–574

    PubMed  CAS  Google Scholar 

  • Caine SB, Geyer MA, Swerdlow NR (1995) Effects of D3/D2 dopamine receptor agonists and antagonists on prepulse inhibition of acoustic startle in the rat. Neuropsychopharmacology 12:139–145

    PubMed  CAS  Google Scholar 

  • Calcagno E, Carli M, Invernizzi RW (2006) The 5-HT(1A) receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J Neurochem 96:853–860

    PubMed  CAS  Google Scholar 

  • Carilla-Durand E, Assié MB, Maraval M, Newman-Tancredi A (2004a) Effects on plasma prolactin and corticosterone levels of antipsychotics with diverse dopamine D2 and serotonin 5-HT1A properties 24th Congress of International NeuroPsychopharmacology, Paris, pp P02.507

  • Carilla-Durand E, Assié MB, Maraval M, Newman-Tancredi A (2004b) Effects on plasma prolactin and corticosterone levels of antipsychotics with diverse dopamine D2 and serotonin 5-HT1A properties. 24th Congress of International NeuroPsychopharmacology, Paris, pp Poster P02.507

  • Casey DE, Sands EE, Heisterberg J, Yang HM (2008) Efficacy and safety of bifeprunox in patients with an acute exacerbation of schizophrenia: results from a randomized, double-blind, placebo-controlled, multicenter, dose-finding study. Psychopharmacol Berl 200:317–331

    CAS  Google Scholar 

  • Chessick CA, Allen MH, Thase M, Batista Miralha da Cunha AB, Kapczinski FF, de Lima MS, dos Santos Souza JJ (2006) Azapirones for generalized anxiety disorder. Cochrane Database Syst Rev 3: CD006115

  • Chou YH, Halldin C, Farde L (2003) Occupancy of 5-HT1A receptors by clozapine in the primate brain: a PET study. Psychopharmacol Berl 166:234–240

    CAS  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880

    PubMed  CAS  Google Scholar 

  • Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC (2007) Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb Cortex 17:18–27

    PubMed  CAS  Google Scholar 

  • Corripio I, Catafau AM, Perez V, Puigdemont D, Mena E, Aguilar Y, Carrio I, Alvarez E (2005) Striatal dopaminergic D2 receptor occupancy and clinical efficacy in psychosis exacerbation: a 123I-IBZM study with ziprasidone and haloperidol. Prog Neuropsychopharmacol Biol Psychiatry 29:91–96

    PubMed  CAS  Google Scholar 

  • Cosi C, Carilla-Durand E, Assié MB, Ormiere AM, Maraval M, Leduc N, Newman-Tancredi A (2006) Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 535:135–144

    PubMed  CAS  Google Scholar 

  • Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182

    PubMed  CAS  Google Scholar 

  • Cussac D, Duqueyroix D, Newman-Tancredi A, Millan MJ (2002) Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacol Berl 162:168–177

    CAS  Google Scholar 

  • Cussac D, Martel JC, Assié MB, Heusler P, Rauly-Lestienne I, Ailhaud MC, Danty N, Leduc N, Ormière AM, Pulou G, Tardif S, Newman-Tancredi A (2008) Distinctive affinity profile of novel antipsychotics possessing combined D2 and 5-HT1A receptor properties compared with conventional and atypical antipsychotics. Society for Neuroscience—38th Annual Meeting, Washington DC, pp 155.9

  • Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989:42–51

    PubMed  CAS  Google Scholar 

  • Dahan L, Husum H, Mnie-Filali O, Arnt J, Hertel P, Haddjeri N (2009) Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. J Psychopharmacol 23:177–189

    PubMed  CAS  Google Scholar 

  • Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564

    PubMed  CAS  Google Scholar 

  • Delay J, Deniker P, Harl JM (1952) Utilisation en thérapeutique psychiatrique d’une phénothiazine d’action centrale élective (4560 RP). Ann Med Psychol (Paris) 110:112–117

    CAS  Google Scholar 

  • Depoortere R, Boulay D, Perrault G, Bergis O, Decobert M, Francon D, Jung M, Simiand J, Soubrie P, Scatton B (2003) SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonistII: Behavioral profile predictive of an atypical antipsychotic activity. Neuropsychopharmacology 28:1889–1902

    PubMed  CAS  Google Scholar 

  • Depoortere R, Auclair AL, Bardin L, Bruins Slot L, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2007a) F15063, a compound with D2/D3 antagonist, 5-HT 1A agonist and D4 partial agonist properties. III. Activity in models of cognition and negative symptoms. Br J Pharmacol 151:266–277

    PubMed  CAS  Google Scholar 

  • Depoortere R, Bardin L, Auclair AL, Kleven MS, Prinssen E, Colpaert F, Vacher B, Newman-Tancredi A (2007b) F15063, a compound with D2/D3 antagonist, 5-HT 1A agonist and D4 partial agonist properties. II. Activity in models of positive symptoms of schizophrenia. Br J Pharmacol 151:253–265

    PubMed  CAS  Google Scholar 

  • Depoortere R, Barret-Grevoz C, Bardin L, Newman-Tancredi A (2008) Apomorphine-induced emesis in dogs: differential sensitivity to established and novel dopamine D2/5-HT1A antipsychotic compounds. Eur J Pharmacol 597:34–38

    PubMed  CAS  Google Scholar 

  • Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM, Maroteaux L (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28:2933–2940

    PubMed  CAS  Google Scholar 

  • Elliott J, Reynolds GP (1999) Agonist-stimulated GTPgamma[35 S] binding to 5-HT(1A) receptors in human post-mortem brain. Eur J Pharmacol 386:313–315

    PubMed  CAS  Google Scholar 

  • Evans K, McGrath J, Milns R (2003) Searching for schizophrenia in ancient Greek and Roman literature: a systematic review. Acta Psychiatr Scand 107:323–330

    PubMed  CAS  Google Scholar 

  • Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2:439–447

    PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Probert AW, Borosky SA, Evans L, Whisman T, Donovan CM, Knauer CS, Akunne H, Johnson DS, White AD, Serpa KA (2009) In vitro pharmacological profile of PF-00217830, a novel dopamine D2 and 5-HT1A partial agonist/5-HT2A antagonist targeting the treatment of positive and negative symptoms of schizophrenia Society for Neuroscience, Chicago, IL, USA, pp 646.23

  • Goff DC, Midha KK, Brotman AW, McCormick S, Waites M, Amico ET (1991) An open trial of buspirone added to neuroleptics in schizophrenic patients. J Clin Psychopharmacol 11:193–197

    PubMed  CAS  Google Scholar 

  • Gogos A, Nathan PJ, Guille V, Croft RJ, van den Buuse M (2006) Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology 31:885–889

    PubMed  CAS  Google Scholar 

  • Gogos A, Bogeski M, van den Buuse M (2008) Role of serotonin-1A receptors in the action of antipsychotic drugs: comparison of prepulse inhibition studies in mice and rats and relevance for human pharmacology. Behav Pharmacol 19:548–561

    PubMed  CAS  Google Scholar 

  • Grof P, Joffe R, Kennedy S, Persad E, Syrotiuk J, Bradford D (1993) An open study of oral flesinoxan, a 5-HT1A receptor agonist, in treatment-resistant depression. Int Clin Psychopharmacol 8:167–172

    PubMed  CAS  Google Scholar 

  • Grunder G (2010) Cariprazine, an orally active D2/D3 receptor antagonist, for the potential treatment of schizophrenia, bipolar mania and depression. Curr Opin Investig Drugs 11:823–832

    PubMed  Google Scholar 

  • Gyertyan I, Saghy K (2007) The selective dopamine D3 receptor antagonists, SB 277011-A and S 33084 block haloperidol-induced catalepsy in rats. Eur J Pharmacol 572:171–174

    PubMed  CAS  Google Scholar 

  • Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR (2009) Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol Psychiatry 66:214–222

    PubMed  CAS  Google Scholar 

  • Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 18:448–454

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Nishino N, Nakai H, Tanaka C (1991) Increase in serotonin 5-HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sci 48:355–363

    PubMed  CAS  Google Scholar 

  • Hatta K, Sato K, Hamakawa H, Takebayashi H, Kimura N, Ochi S, Sudo Y, Asukai N, Nakamura H, Usui C, Kawabata T, Hirata T, Sawa Y (2009) Effectiveness of second-generation antipsychotics with acute-phase schizophrenia. Schizophr Res 113:49–55

    PubMed  Google Scholar 

  • Heusler P, Newman-Tancredi A, Castro-Fernandez A, Cussac D (2007) Differential agonist and inverse agonist profile of antipsychotics at D2L receptors coupled to GIRK potassium channels. Neuropharmacology 52:1106–1113

    PubMed  CAS  Google Scholar 

  • Heusler P, Newman-Tancredi A, Loock T, Cussac D (2008) Antipsychotics differ in their ability to internalise human dopamine D2S and human serotonin 5-HT1A receptors in HEK293 cells. Eur J Pharmacol 581:37–46

    PubMed  CAS  Google Scholar 

  • Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 96:13432–13437

    PubMed  CAS  Google Scholar 

  • Horiguchi M, Meltzer HY (2010) Interactions among the atypical antipsychotic drug (APD), lurasidone, 5-HT1A and metabotropic glutamate receptor 2/3 (mGluR2/3) agonism, and 5-HT2A antagonism, to attenuate phencyclidine (PCP)-induced deficit in rat novel object recognition (NOR) Society for Neuroscience—40th Annual Meeting, San Diego, CA, pp Program No. 610.12

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    PubMed  Google Scholar 

  • Howes OD, McDonald C, Cannon M, Arseneault L, Boydell J, Murray RM (2004) Pathways to schizophrenia: the impact of environmental factors. Int J Neuropsychopharmacol 7(Suppl 1):S7–S13

    PubMed  CAS  Google Scholar 

  • Iacono WG (1998) Identifying psychophysiological risk for psychopathology: examples from substance abuse and schizophrenia research. Psychophysiology 35:621–637

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (2000) The effect of serotonin(1A) receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res 858:252–263

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Dai J, O’Laughlin IA, Fowler WL, Meltzer HY (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26:325–339

    PubMed  CAS  Google Scholar 

  • Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT, Arnt J (2010) Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacol Berl 208:23–36

    CAS  Google Scholar 

  • Ikeda K, Murai T, Tsujimura T, Fukuoka T, Ikejiri M, Hoshino K, Ishiyama T, Kimura J, Taiji M (2010) A unique cognitive enhancing effect of lurasidone in object retrieval with detours, a test of executive function in non-human primates Society for Neuroscience—40th Annual Meeting, San Diego, CA, pp Program No. 506.23

  • Invernizzi RW, Cervo L, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S, Oki H, Tanno N, Saji I, Ito A, Ohno Y, Nakamura M (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 334:171–181

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    PubMed  CAS  Google Scholar 

  • Jones CA, McCreary AC (2008) Serotonergic approaches in the development of novel antipsychotics. Neuropharmacology 55:1056–1065

    PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140

    PubMed  CAS  Google Scholar 

  • Jordan S, Koprivica V, Dunn R, Tottori K, Kikuchi T, Altar CA (2004) In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. Eur J Pharmacol 483:45–53

    PubMed  CAS  Google Scholar 

  • Kalkman HO, Loetscher E (2003) alpha2C-Adrenoceptor blockade by clozapine and other antipsychotic drugs. Eur J Pharmacol 462:33–40

    PubMed  CAS  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    PubMed  CAS  Google Scholar 

  • Keller MB, Ruwe FJ, Janssens CJ, Sitsen JM, Jokinen R, Janczewski J (2005) Relapse prevention with gepirone ER in outpatients with major depression. J Clin Psychopharmacol 25:79–84

    PubMed  CAS  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302

    PubMed  CAS  Google Scholar 

  • Khan A, Batool F, Haleem DJ (2001) Behavioral effects of 8-OH-DPAT in single and repeated haloperidol injected rats. Pak J Pharm Sci 14:9–17

    PubMed  CAS  Google Scholar 

  • Kirk SL, Glazebrook J, Grayson B, Neill JC, Reynolds GP (2009) Olanzapine-induced weight gain in the rat: role of 5-HT2C and histamine H1 receptors. Psychopharmacol Berl 207:119–125

    CAS  Google Scholar 

  • Kiss B, Horvath A, Nemethy Z, Schmidt E, Laszlovszky I, Bugovics G, Fazekas K, Hornok K, Orosz S, Gyertyan I, Agai-Csongor E, Domany G, Tihanyi K, Adham N, Szombathelyi Z (2010) Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther 333:328–340

    PubMed  CAS  Google Scholar 

  • Kleven M, Prinssen EP, Koek W (1996) Role of 5-HT1A receptors in the ability of mixed 5-HT1A receptor agonist/dopamine D2 receptor antagonists to inhibit methylphenidate-induced behaviors in rats. Eur J Pharmacol 313:25–34

    PubMed  CAS  Google Scholar 

  • Kleven MS, Barret-Grevoz C, Bruins Slot L, Newman-Tancredi A (2005) Novel antipsychotic agents with 5-HT(1A) agonist properties: role of 5-HT(1A) receptor activation in attenuation of catalepsy induction in rats. Neuropharmacology 49:135–143

    PubMed  CAS  Google Scholar 

  • Kollins SH, MacDonald EK, Rush CR (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 68:611–627

    PubMed  CAS  Google Scholar 

  • Kroeze WK, Roth BL (1998) The molecular biology of serotonin receptors: therapeutic implications for the interface of mood and psychosis. Biol Psychiatry 44:1128–1142

    PubMed  CAS  Google Scholar 

  • Kroeze WK, Hufeisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, Jayathilake K, Meltzer HY, Roth BL (2003) H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 28:519–526

    PubMed  CAS  Google Scholar 

  • Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacol Berl 169:215–233

    CAS  Google Scholar 

  • Krystal JH, Mathew SJ, D’Souza DC, Garakani A, Gunduz-Bruce H, Charney DS (2010) Potential psychiatric applications of metabotropic glutamate receptor agonists and antagonists. CNS Drugs 24:669–693

    PubMed  CAS  Google Scholar 

  • Kumar JS, Mann JJ (2007) PET tracers for 5-HT(1A) receptors and uses thereof. Drug Discov Today 12:748–756

    PubMed  CAS  Google Scholar 

  • Kuroki T, Nagao N, Nakahara T (2008) Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis. Prog Brain Res 172:199–212

    PubMed  CAS  Google Scholar 

  • Lawrence AJ (2007) Optimisation of anti-psychotic therapeutics: a balancing act? Br J Pharmacol 151:161–162

    PubMed  CAS  Google Scholar 

  • Le Francois B, Czesak M, Steubl D, Albert PR (2008) Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 55:977–985

    PubMed  Google Scholar 

  • Lemoine L, Verdurand M, Vacher B, Blanc E, Le Bars D, Newman-Tancredi A, Zimmer L (2010) [18 F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. Eur J Nucl Med Mol Imaging 37:594–605

    PubMed  Google Scholar 

  • Lemonde S, Turecki G, Bakish D, Du L, Hrdina PD, Bown CD, Sequeira A, Kushwaha N, Morris SJ, Basak A, Ou XM, Albert PR (2003) Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799

    PubMed  CAS  Google Scholar 

  • Leucht S, Wahlbeck K, Hamann J, Kissling W (2003) New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 361:1581–1589

    PubMed  CAS  Google Scholar 

  • Lewis R (2004) Should cognitive deficit be a diagnostic criterion for schizophrenia? J Psychiatry Neurosci 29:102–113

    PubMed  Google Scholar 

  • Leysen J (2000) Receptor profile of antipsychotics. In: Ellenbroek BA, Cools AR (eds) Atypical antipsychotics. Birkhäuser, Basel, Switzerland, pp 57–81

    Google Scholar 

  • Leysen JE, Janssen PM, Schotte A, Luyten WH, Megens AA (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacol Berl 112:S40–S54

    CAS  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    PubMed  CAS  Google Scholar 

  • Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY (2005) N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors. Neuropsychopharmacology 30:1986–1995

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B (1984) Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 141:633–638

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacol Berl 91:415–433

    CAS  Google Scholar 

  • Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors. Br J Pharmacol 160:1929–1940

    PubMed  CAS  Google Scholar 

  • Loiseau F, Millan MJ (2009) Blockade of dopamine D(3) receptors in frontal cortex, but not in sub-cortical structures, enhances social recognition in rats: similar actions of D(1) receptor agonists, but not of D(2) antagonists. Eur Neuropsychopharmacol 19:23–33

    PubMed  CAS  Google Scholar 

  • Mailman RB, Murthy V (2010) Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des 16:488–501

    PubMed  CAS  Google Scholar 

  • Mannoury la Cour C, El Mestikawy S, Hanoun N, Hamon M, Lanfumey L (2006) Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 70:1013–1021

    PubMed  Google Scholar 

  • Marcus MM, Wiker C, Franberg O, Konradsson-Geuken A, Langlois X, Jardemark K, Svensson TH (2010) Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 13:891–903

    PubMed  CAS  Google Scholar 

  • Martel J-C, Cussac D, Assié M-B, Rauly-Lestienne I, Newman-Tancredi A (2006) Antagonism of serotonin 5-HT2B receptors: activity of atypical benzamide antipsychotics in comparison with 5-HT2A, 5-HT2C and dopamine D2 receptors. Society for Neuroscience—36th Annual Meeting, Atlanta, Georgia, pp Program number 93.8

  • Martin P, Waters N, Schmidt CJ, Carlsson A, Carlsson ML (1998) Rodent data and general hypothesis: antipsychotic action exerted through 5-Ht2A receptor antagonism is dependent on increased serotonergic tone. J Neural Transm 105:365–396

    PubMed  CAS  Google Scholar 

  • Mauler F, Fahrig T, Horvath E, Jork R (2001) Inhibition of evoked glutamate release by the neuroprotective 5-HT(1A) receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888:150–157

    PubMed  CAS  Google Scholar 

  • McCormick PN, Kapur S, Graff-Guerrero A, Raymond R, Nobrega JN, Wilson AA (2010) The antipsychotics olanzapine, risperidone, clozapine, and haloperidol are D2-selective ex vivo but not in vitro. Neuropsychopharmacology 35:1826–1835

    PubMed  CAS  Google Scholar 

  • McCreary AC, Glennon JC, Ashby CR Jr, Meltzer HY, Li Z, Reinders JH, Hesselink MB, Long SK, Herremans AH, van Stuivenberg H, Feenstra RW, Kruse CG (2007) SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4- [5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): a novel dopamine D2 receptor antagonist and 5-HT1A receptor agonist potential antipsychotic drug. Neuropsychopharmacology 32:78–94

    PubMed  CAS  Google Scholar 

  • McMillen BA, Scott SM, Davanzo EA (1988) Reversal of neuroleptic-induced catalepsy by novel aryl-piperazine anxiolytic drugs. J Pharm Pharmacol 40:885–887

    PubMed  CAS  Google Scholar 

  • Medori R, Mannaert E, Grunder G (2006) Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 16:233–240

    PubMed  CAS  Google Scholar 

  • Melkersson K, Dahl ML (2004) Adverse metabolic effects associated with atypical antipsychotics: literature review and clinical implications. Drugs 64:701–723

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195:98–102

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Park S, Kessler R (1999) Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci USA 96:13591–13593

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:1159–1172

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl) 213(2–3):289–305

    CAS  Google Scholar 

  • Mezler M, Geneste H, Gault L, Marek GJ (2010) LY-2140023, a prodrug of the group II metabotropic glutamate receptor agonist LY-404039 for the potential treatment of schizophrenia. Curr Opin Investig Drugs 11:833–845

    PubMed  CAS  Google Scholar 

  • Michelsen JW, Meyer JM (2007) Cardiovascular effects of antipsychotics. Expert Rev Neurother 7:829–839

    PubMed  CAS  Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin (5-HT)(1A) receptors. J Pharmacol Exp Ther 295:853–861

    PubMed  CAS  Google Scholar 

  • Millan MJ (2005) N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacol Berl 179:30–53

    CAS  Google Scholar 

  • Millan MJ, Gobert A, Newman-Tancredi A, Audinot V, Lejeune F, Rivet JM, Cussac D, Nicolas JP, Muller O, Lavielle G (1998a) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-Yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: I. Receptorial and neurochemical profile in comparison with clozapine and haloperidol. J Pharmacol Exp Ther 286:1341–1355

    PubMed  CAS  Google Scholar 

  • Millan MJ, Schreiber R, Dekeyne A, Rivet JM, Bervoets K, Mavridis M, Sebban C, Maurel-Remy S, Newman-Tancredi A, Spedding M, Muller O, Lavielle G, Brocco M (1998b) S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: II. Functional profile in comparison to clozapine and haloperidol. J Pharmacol Exp Ther 286:1356–1373

    PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 11:4419–4432

    PubMed  CAS  Google Scholar 

  • Millan MJ, Brocco M, Rivet JM, Audinot V, Newman-Tancredi A, Maiofiss L, Queriaux S, Despaux N, Peglion JL, Dekeyne A (2000) S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)piperid-1-yl]ethyl]3-phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: II. Functional profile and a multiparametric comparison with haloperidol, clozapine, and 11 other antipsychotic agents. J Pharmacol Exp Ther 292:54–66

    PubMed  CAS  Google Scholar 

  • Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D, Cistarelli L, Billiras R, Gobert A (2007) Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061

    PubMed  CAS  Google Scholar 

  • Millan MJ, Buccafusco JJ, Loiseau F, Watson DJ, Decamp E, Fone KC, Thomasson-Perret N, Hill M, Mocaer E, Schneider JS (2010) The dopamine D(3) receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 13:1035–1051

    PubMed  CAS  Google Scholar 

  • Mojtabai R, Lavelle J, Gibson PJ, Bromet EJ (2003) Atypical antipsychotics in first admission schizophrenia: medication continuation and outcomes. Schizophr Bull 29:519–530

    PubMed  Google Scholar 

  • Moller HJ (2005) Antipsychotic and antidepressive effects of second generation antipsychotics: two different pharmacological mechanisms? Eur Arch Psychiatry Clin Neurosci 255:190–201

    PubMed  Google Scholar 

  • Mossner R, Schuhmacher A, Kuhn KU, Cvetanovska G, Rujescu D, Zill P, Quednow BB, Rietschel M, Wolwer W, Gaebel W, Wagner M, Maier W (2009) Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet Genomics 19:91–94

    PubMed  Google Scholar 

  • Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H, Nabeshima T (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacol Berl 202:315–328

    CAS  Google Scholar 

  • Nakai S, Hirose T, Mori T, Stark A, Araki H, Kikuchi T (2008) The effect of aripiprazole on prepulse inhibition of the startle response in normal and hyperdopaminergic states in rats. Int J Neurosci 118:39–57

    PubMed  CAS  Google Scholar 

  • Nasrallah HA (2008) Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry 13:27–35

    PubMed  CAS  Google Scholar 

  • Natesan S, Reckless GE, Barlow KB, Nobrega JN, Kapur S (2010) Partial agonists in schizophrenia—why some work and others do not: insights from preclinical animal models. Int J Neuropsychopharmacol 1–14

  • Naumenko VS, Bazovkina DV, Kondaurova EM, Zubkov EA, Kulikov AV (2010) The role of 5-HT2A receptor and 5-HT2A/5-HT1A receptor interaction in the suppression of catalepsy. Genes Brain Behav 9:519–524

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A (2010) The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr Opin Investig Drugs 11:802–812

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Assié MB, Leduc N, Ormiere AM, Danty N, Cosi C (2005) Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia. Int J Neuropsychopharmacol 8:341–356

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Assié M-B, Martel J-C, Cosi C, Heusler P, Bruins Slot L, Carilla-Durand E, Cussac D (2006) F15063, a novel antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties: I. receptor affinity and efficacy in vitro and activity in neurochemical and neuroendocrine tests in rodents. 19th ECNP Congress Paris, France, pp Poster P.3.d.004

  • Newman-Tancredi A, Assié MB, Martel JC, Cosi C, Slot LB, Palmier C, Rauly-Lestienne I, Colpaert F, Vacher B, Cussac D (2007a) F15063, a potential antipsychotic with D2/D3 antagonist, 5-HT1A agonist and D4 partial agonist properties. I. In vitro receptor affinity and efficacy profile. Br J Pharmacol 151:237–252

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Cussac D, Depoortere R (2007b) Neuropharmacological profile of bifeprunox: merits and limitations in comparison with other third-generation antipsychotics. Curr Opin Investig Drugs 8:539–554

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Heusler P, Martel JC, Ormiere AM, Leduc N, Cussac D (2008) Agonist and antagonist properties of antipsychotics at human dopamine D4.4 receptors: G-protein activation and K + channel modulation in transfected cells. Int J Neuropsychopharmacol 11:293–307

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156:338–353

    PubMed  CAS  Google Scholar 

  • Nuss P, Tessier C (2010) Antipsychotic medication, functional outcome and quality of life in schizophrenia: focus on amisulpride. Curr Med Res Opin 26:787–801

    PubMed  CAS  Google Scholar 

  • Ogren SO, Eriksson TM, Elvander-Tottie E, D’Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J, Stiedl O (2008) The role of 5-HT1A receptors in learning and memory. Behav Brain Res 195:54–77

    PubMed  Google Scholar 

  • Ojima T, Ito C, Sakurai E, Watanabe T, Yanai K (2004) Effects of serotonin-dopamine antagonists on prepulse inhibition and neurotransmitter contents in the rat cortex. Neurosci Lett 366:130–134

    PubMed  CAS  Google Scholar 

  • Peet M (2004) Diet, diabetes and schizophrenia: review and hypothesis. Br J Psychiatry Suppl 47:S102–S105

    PubMed  Google Scholar 

  • Porsolt RD, Moser PC, Castagne V (2010) Behavioral indices in antipsychotic drug discovery. J Pharmacol Exp Ther 333:632–638

    PubMed  CAS  Google Scholar 

  • Prinssen EP, Kleven MS, Koek W (1996) Effects of dopamine antagonists in a two-way active avoidance procedure in rats: interactions with 8-OH-DPAT, ritanserin, and prazosin. Psychopharmacol Berl 128:191–197

    CAS  Google Scholar 

  • Prinssen EP, Colpaert FC, Koek W (2002) 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol 453:217–221

    PubMed  CAS  Google Scholar 

  • Rajji TK, Uchida H, Ismail Z, Ng W, Mamo DC, Remington G, Pollock BG, Mulsant BH (2010) Clozapine and global cognition in schizophrenia. J Clin Psychopharmacol 30:431–436

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Kirk SL (2010) Metabolic side effects of antipsychotic drug treatment—pharmacological mechanisms. Pharmacol Ther 125:169–179

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L (2006) Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 163:1826–1829

    PubMed  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338:R3–R5

    PubMed  CAS  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Sprouse JS, Zorn SH (2000) 5-HT(1A) receptor activation contributes to ziprasidone-induced dopamine release in the rat prefrontal cortex. Biol Psychiatry 48:229–237

    PubMed  CAS  Google Scholar 

  • Rossler W, Salize HJ, van Os J, Riecher-Rossler A (2005) Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 15:399–409

    PubMed  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    PubMed  CAS  Google Scholar 

  • Sams-Dodd F (1999) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 10:59–90

    PubMed  CAS  Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109

    PubMed  Google Scholar 

  • Schotte A, Janssen PF, Megens AA, Leysen JE (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631:191–202

    PubMed  CAS  Google Scholar 

  • Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28:1400–1411

    PubMed  CAS  Google Scholar 

  • Sharma RP, Shapiro LE (1996) The 5-HT1A receptor system: possible implications for schizophrenic negative symptomatology. Psychiatr Ann 26:88–93

    Google Scholar 

  • Shirazi-Southall S, Rodriguez DE, Nomikos GG (2002) Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26:583–594

    PubMed  CAS  Google Scholar 

  • Shiwa T, Amano T, Matsubayashi H, Seki T, Sasa M, Sakai N (2003) Perospirone, a novel antipsychotic agent, hyperpolarizes rat dorsal raphe neurons via 5-HT1A receptor. J Pharmacol Sci 93:114–117

    PubMed  CAS  Google Scholar 

  • Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1809–1816

    PubMed  Google Scholar 

  • Smith RC, Davis JM (1977) Comparative effects of d-amphetamine, l-amphetamine, and methylphenidate on mood in man. Psychopharmacol Berl 53:1–12

    CAS  Google Scholar 

  • Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191:26–31

    PubMed  CAS  Google Scholar 

  • Sovner R, Parnell-Sovner N (1989) Use of buspirone in the treatment of schizophrenia. J Clin Psychopharmacol 9:61–62

    PubMed  CAS  Google Scholar 

  • Spiros A, Carr R, Geerts H (2010) Not all partial dopamine D(2) receptor agonists are the same in treating schizophrenia. Exploring the effects of bifeprunox and aripiprazole using a computer model of a primate striatal dopaminergic synapse. Neuropsychiatr Dis Treat 6:589–603

    PubMed  CAS  Google Scholar 

  • Stark AD, Jordan S, Allers KA, Bertekap RL, Chen R, Mistry Kannan T, Molski TF, Yocca FD, Sharp T, Kikuchi T, Burris KD (2007) Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT 2A receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacol Berl 190:373–382

    CAS  Google Scholar 

  • Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708:209–214

    PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer HY (2001a) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158:1722–1725

    PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001b) The effect of tandospirone, a serotonin(1A) agonist, on memory function in schizophrenia. Biol Psychiatry 49:861–868

    PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Higuchi Y, Matsui M, Arai H, Takamiya C, Meltzer HY, Kurachi M (2007) Effective adjunctive use of tandospirone with perospirone for enhancing verbal memory and quality of life in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:965–967

    PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Tsunoda M, Higuchi Y, Itoh T, Seo T, Itoh H, Suzuki M, Kurachi M (2010) Serotonin-1A receptor gene polymorphism and the ability of antipsychotic drugs to improve attention in schizophrenia. Adv Ther 27:307–313

    PubMed  CAS  Google Scholar 

  • Szewczyk B, Albert PR, Burns AM, Czesak M, Overholser JC, Jurjus GJ, Meltzer HY, Konick LC, Dieter L, Herbst N, May W, Rajkowska G, Stockmeier CA, Austin MC (2009) Gender-specific decrease in NUDR and 5-HT1A receptor proteins in the prefrontal cortex of subjects with major depressive disorder. Int J Neuropsychopharmacol 12:155–168

    PubMed  CAS  Google Scholar 

  • Tadori Y, Kitagawa H, Forbes RA, McQuade RD, Stark A, Kikuchi T (2007) Differences in agonist/antagonist properties at human dopamine D(2) receptors between aripiprazole, bifeprunox and SDZ 208–912. Eur J Pharmacol 574:103–111

    PubMed  CAS  Google Scholar 

  • Tadori Y, Forbes RA, McQuade RD, Kikuchi T (2009) Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors. Eur J Pharmacol 607:35–40

    PubMed  CAS  Google Scholar 

  • Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69:1749–1757

    PubMed  CAS  Google Scholar 

  • Tauscher J, Kapur S, Verhoeff NP, Hussey DF, Daskalakis ZJ, Tauscher-Wisniewski S, Wilson AA, Houle S, Kasper S, Zipursky RB (2002) Brain serotonin 5-HT(1A) receptor binding in schizophrenia measured by positron emission tomography and [11 C]WAY-100635. Arch Gen Psychiatry 59:514–520

    PubMed  CAS  Google Scholar 

  • Titier K, Girodet PO, Verdoux H, Molimard M, Begaud B, Haverkamp W, Lader M, Moore N (2005) Atypical antipsychotics: from potassium channels to torsade de pointes and sudden death. Drug Saf 28:35–51

    PubMed  CAS  Google Scholar 

  • Tohyama Y, Yamane F, Merid MF, Diksic M (2001) Effects of selective 5-HT1A receptor antagonists on regional serotonin synthesis in the rat brain: an autoradiographic study with alpha-[14 C]methyl-L-tryptophan. Eur Neuropsychopharmacol 11:193–202

    PubMed  CAS  Google Scholar 

  • Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16:522–537

    PubMed  CAS  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007a) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    PubMed  CAS  Google Scholar 

  • Urban JD, Vargas GA, von Zastrow M, Mailman RB (2007b) Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 32:67–77

    PubMed  CAS  Google Scholar 

  • van den Buuse M, Gogos A (2007) Differential effects of antipsychotic drugs on serotonin-1A receptor-mediated disruption of prepulse inhibition. J Pharmacol Exp Ther 320:1224–1236

    PubMed  Google Scholar 

  • Van Vliet BJ, Mos J, Van der Heijden JAM, Feenstra R, Kruse CG, Long SK (2000a) DU 127090: a highly potent, atypical dopamine receptor ligand—a putative potent full spectrum antipsychotic with low EPS potential. Eur J Neuropsychopharmacology 10(suppl3):2.034

    Google Scholar 

  • Van Vliet BJ, Ronken E, Tulp M, Feenstra R, Kruse CG (2000b) DU 127090: a highly potent, atypical dopamine receptor ligand—high potency but low efficacy at dopamine D2 receptors in vitro. Eur J Neuropsychopharmacology 10(suppl3):2.035

    Google Scholar 

  • Wadenberg ML, Ahlenius S (1991) Antipsychotic-like profile of combined treatment with raclopride and 8-OH-DPAT in the rat: enhancement of antipsychotic-like effects without catalepsy. J Neural Transm Gen Sect 83:43–53

    PubMed  CAS  Google Scholar 

  • Wadenberg ML, Young KA, Richter JT, Hicks PB (1999) Effects of local application of 5-hydroxytryptamine into the dorsal or median raphe nuclei on haloperidol-induced catalepsy in the rat. Neuropharmacology 38:151–156

    PubMed  CAS  Google Scholar 

  • Wang L, Fang C, Zhang A, Du J, Yu L, Ma J, Feng G, Xing Q, He L (2008) The –1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol 22:904–909

    PubMed  CAS  Google Scholar 

  • Weber M, Chang WL, Breier MR, Yang A, Millan MJ, Swerdlow NR (2010) The effects of the dopamine D2 agonist sumanirole on prepulse inhibition in rats. Eur Neuropsychopharmacol 20:421–425

    PubMed  CAS  Google Scholar 

  • Wedzony K, Mackowiak M, Czyrak A, Fijal K, Michalska B (1997) Single doses of MK-801, a non-competitive antagonist of NMDA receptors, increase the number of 5-HT1A serotonin receptors in the rat brain. Brain Res 756:84–91

    PubMed  CAS  Google Scholar 

  • Wedzony K, Mackowiak M, Zajaczkowski W, Fijal K, Chocyk A, Czyrak A (2000) WAY 100135, an antagonist of 5-HT1A serotonin receptors, attenuates psychotomimetic effects of MK-801. Neuropsychopharmacology 23:547–559

    PubMed  CAS  Google Scholar 

  • Wedzony K, Chocyk A, Mackowiak M (2008) A search for colocalization of serotonin 5-HT2A and 5-HT1A receptors in the rat medial prefrontal and entorhinal cortices—immunohistochemical studies. J Physiol Pharmacol 59:229–238

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003) Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacol Berl 167:304–314

    CAS  Google Scholar 

  • Wong EH, Yocca F, Smith MA, Lee CM (2010) Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. Int J Neuropsychopharmacol 13:1269–1284

    PubMed  Google Scholar 

  • Yadav PN, Abbas AI, Farrell MS, Setola V, Sciaky N, Huang XP, Kroeze WK, Crawford LK, Piel DA, Keiser MJ, Irwin JJ, Shoichet BK, Deneris ES, Gingrich J, Beck SG, Roth BL (2011) The presynaptic component of the serotonergic system is required for clozapine’s efficacy. Neuropsychopharmacology 36:638–651

    PubMed  CAS  Google Scholar 

  • Yuen EY, Jiang Q, Chen P, Feng J, Yan Z (2008) Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem 283:17194–17204

    PubMed  CAS  Google Scholar 

  • Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of Francis Colpaert (deceased in 2010) to developing the 5-HT1A/D2 antipsychotic concept. The authors have no conflict of interest or financial obligations that relate to the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Newman-Tancredi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman-Tancredi, A., Kleven, M.S. Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology 216, 451–473 (2011). https://doi.org/10.1007/s00213-011-2247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2247-y

Keywords

Navigation