Skip to main content

Nicotinic Mechanisms in the Treatment of Psychotic Disorders: A Focus on the α7 Nicotinic Receptor

  • Chapter
  • First Online:
Novel Antischizophrenia Treatments

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 213))

Abstract

Nicotine is heavily abused by persons with schizophrenia. Nicotine better enables people with schizophrenia to filter out extraneous auditory stimuli. Nicotine also improves prepulse inhibition when compared to placebo. Nicotine similarly increases the amplitude of patients’ duration mismatch negativity. The 15q13-14 region of the genome coding for the α7 nicotinic receptor is linked to schizophrenia. Multiple single nucleotide polymorphisms have been identified in this 15q13-14 gene promoter region that are more frequently present in people with schizophrenia than in normal controls. Abnormalities in expression and regulation of central nicotinic cholinoceptors with decreased α7 binding in multiple brain regions are also present. Nicotine enhances cognition in schizophrenia. Alternative agents that activate the nicotinic receptor have been tested including 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB-A). This compound improved attention, working memory, and negative symptoms in an add-on study in nonsmoking patients with schizophrenia. There are multiple other nicotinic agents, including positive allosteric modulators, in the preclinical stages of development. Finally, the effects of varenicline and clozapine and their relation to smoking cessation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861

    PubMed  CAS  Google Scholar 

  • AhnAllen CG, Nestor PG, Shenton ME, McCarley RW, Niznikiewicz MA (2008) Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res 100(1–3):261–269

    Article  PubMed  Google Scholar 

  • Albuquerque EX, Pereira EFR, Braga MFM, Alkondon M (1998) Contribution of nicotinic receptors to the function of synapses in the central nervous system: the action of choline as a selective agonist of alpha-7 receptors. J Physiol (Paris) 92:309–316

    Article  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX (2000) Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology 39(13):2726–2739.

    Article  PubMed  CAS  Google Scholar 

  • Barak S, Arad M, De Levie A, Black MD, Griebel G, Weiner I (2009) Pro-cognitive and antipsychotic efficacy of the alpha 7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia. Neuropsychopharmacology 34:1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Barr RS, Culhane MA, Jubelt LE, Mufti RS, Dyer MA, Weiss AP, Deckersbach T, Kelly JF, Freudenreich O, Goff DC, Evins AE (2008) The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls. Neuropsychopharmacology 33:480–490

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Gomes I, Ghisolfi ES, Schush A, Ramos FL, Ehlers JA, Nora DB, Lara DR, da Costa JC (2004) Clozapine, but not typical antipsychotics, correct P50 suppression deficit in patients with schizophrenia. Clin Neurophysiol 115:396–401

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL (1998) Summary: risks and benefits of nicotine. In: Benowitz NL (ed) Nicotine safety and toxicity. Oxford University Press, New York, pp 185–188

    Google Scholar 

  • Braff DL, Stone C, Callaway E, Geyer MA, Glick ID, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Boutros NN, Zouridakis G, Overall J (1991) Replication and extension of P50 findings in schizophrenia. Clin Electroencephalogr 22:40–45

    PubMed  CAS  Google Scholar 

  • Briggs CA, McKenna DG, Piattoni-Kaplan M (1995) Human alpha-7 nicotinic acetylcholine receptor responses to novel ligands. Neuropharmacology 34:583–590

    Article  PubMed  CAS  Google Scholar 

  • Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Conley RR, Dickenson D, Ball MP, Feldman S, Gold JM, McMahon RP (2008) Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry 165:82–89

    Article  PubMed  Google Scholar 

  • Chen XS, Li CB, Smith RC, Xiao ZP, Wang JJ (2011) Differential sensory gating functions between smokers and non-smokers among drug-naive first episode schizophrenic patients. Psychiatry Res 188:327–333

    Article  PubMed  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1997) P50 suppression among schizophrenia and normal comparison subjects: a methodological analysis. Biol Psychiatry 41:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1998) Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatry 155:1691–1694

    PubMed  CAS  Google Scholar 

  • Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N (1993) Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in thalamus. J Neurochem 73:1590–1597

    Article  Google Scholar 

  • Cullum CM, Harris JG, Waldo MC, Smernoff E, Madison A, Nagamoto HT, Griffith J, Adler LE, Freedman R (1993) Neurophysiological and neuropsychological evidence for attentional dysfunction in schizophrenia. Schizophr Res 10:131–144

    Article  PubMed  CAS  Google Scholar 

  • Curtis L, Blouin J-L, Radhakrishna U, Gehrig C, Lasseter VK, Wolyniec P (1999) No evidence for linkage between schizophrenia and markers at chromosome 15q13-14. Am J Med Genet 88:109–112

    Article  PubMed  CAS  Google Scholar 

  • Dalack GW, Meador-Woodruff JH (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 22:133–141

    Article  PubMed  CAS  Google Scholar 

  • Dalack GW, Becks L, Hill E, Pomerleau OF, Meador-Woodruff JH (1999) Nicotine withdrawal and psychiatric symptoms in cigarette smokers with schizophrenia. Neuropsychopharmacology 21:195–202

    Article  PubMed  CAS  Google Scholar 

  • Decina P, Caracci G, Sandik R, Berman W, Mukherjee S, Scapicchio P (1990) Cigarette smoking and neuroleptic-induced Parkinsonism. Biol Psychiatry 28:502–508

    Article  PubMed  CAS  Google Scholar 

  • De Fiebre CM, Meyer EM, Henry JC, Muraskin SI, Kem WR, Papke RL (1995) Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha-7/125 I-alpha-bungarotoxin receptor subtypes. Mol Pharmacol 47:164–171

    PubMed  Google Scholar 

  • De Leon J, Dadvand M, Canuso C, Odom WA, Stanilla JK, Simpson GM (1995) Schizophrenia and smoking: an epidemiological survey in a Satate hospital. Am J Psychiatry 152:453–455

    PubMed  Google Scholar 

  • Dépatie L, O’Driscoll GA, Holahan AL, Atkinson V, Thavundayil JX, Kin NNY, Lal S (2002) Nicotine and behavioral markers of risk for schizophrenia: a double-blind, placebo-controlled, cross-over study. Neuropsychopharmacology 27:1056–1070

    Article  PubMed  Google Scholar 

  • Diwan A, Castine M, Pomerleau CS, Meador-Woodruff JH, Dalack GW (1998) Differential prevalence of cigarette smoking in patients with schizophrenia vs mood disorders. Schizophr Res 33:113–118

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts D, Malysz J, Faghih R, Gronlien H, Haakerud M, Thorin-Hagne K, Ween H, Gopalakrishnan SM, Hu M, Li J, Anderson DJ, Kohlhaas K, Namovic M, Radek R, Robb H, Briggs CA, Bitner RS, Bunnelle WH, Gopalakrishnan M (2009) Profile of A-716096, a novel thiazolylidine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Biochem Pharmacol 78(2.11):899–925

    Google Scholar 

  • Dulude L, Labelle A, Knott VJ (2010) Acute nicotine alteration of sensory memory impairment in smokers with schizophrenia. J Clin Psychopharmacol 30(5):541–548

    Article  PubMed  CAS  Google Scholar 

  • Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F (2009) The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 56(1):254–263

    Article  PubMed  CAS  Google Scholar 

  • Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV (1998) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18:1187–1195

    PubMed  CAS  Google Scholar 

  • Freedman R, Wetmore C, Stromberg I, Leonard S, Olson L (1993) Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13:1965–1975

    PubMed  CAS  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr F, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci U S A 94:587–592

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman A, Clement B, Ball P, Kutnick J, Pender V, Martin L, Stevens KE, Wagner B, Zerbe G, Soti KWF (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165(8):1040–1047

    Article  PubMed  Google Scholar 

  • Georgette ZDM, Feingold A, Peppe WT, Satterburg CA, Winkel J, Rounsaville BJ, Kosten TR (2002) Nicotine transdermal patch and atypical antipsychotic medications for smoking cessation in schizophrenia. Am J Psychiatry 57:1835–1842

    Google Scholar 

  • George TP, Termine A, Sacco KA, Allen TM, Reutenauer E, Vessiccho JC (2006) A preliminary study of the effects of cigarette smoking on prepulse inhibition in schizophrenia: involvement of nicotinic receptor mechanisms. Schizophr Res 87:307–315

    Article  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH (1993) Cigarette smoking: implications for psychiatric illness. Am J Psychiatry 150:546–553

    PubMed  CAS  Google Scholar 

  • Goff DC, Henderson DC, Amico E (1992) Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psychiatry 149:1189–1194

    PubMed  CAS  Google Scholar 

  • Gold JM, Queern C, Iannone VN, Buchanan RW (1999) Repeatable battery for the assessment of neuropsychological status as a screening test in schizophrenia I: sensitivity, reliability, and validity. Am J Psychiatry 156:1944–1950

    PubMed  CAS  Google Scholar 

  • Griffith JM, O’Neill J, Petty F, Garver D, Young D, Freedman R (1998) Nicotinic receptor desensitization and sensory gating deficits in schizophrenia. Biol Psychiatry 44:98–106

    Article  PubMed  CAS  Google Scholar 

  • Guan Z-Z, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha-7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10:1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Hatsukami D, Fletcher L, Morgan S, Keenan R, Ambie P (1989) The effects of varying cigarette deprivation duration on cognitive and performance tasks. J Subst Abuse 1:407–416

    PubMed  CAS  Google Scholar 

  • Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM, Bencherif M (2009) TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 78:803–812

    Article  PubMed  CAS  Google Scholar 

  • Hershman KM, Freedman R, Bickford PC (1995) GABA-B antagonists diminish the inhibitory gating of auditory response in the rat hippocampus. Neurosci Lett 190:133–136

    Article  PubMed  CAS  Google Scholar 

  • Hong LE, Thaker GK, McMahon RP, Summerfelt A, Rachbeisel J, Fuller RL, Wonodi I, Buchanan RW, Myers C, Heishman SJ, Yang J, Nye A (2011) Effects of moderate-dose treatment with varenicline on neurobiological and cognitive biomarkers in smokers and nonsmokers with schizophrenia or schizoaffective disorder. Arch Gen Psychiatry 68:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Hong LE, Wonodi I, Lewis J, Thaker GK (2008) Nicotine effect on prepulse facilitation in schizophrenia patients. Neuropsychopharmacology 33:2167–2174

    Article  PubMed  CAS  Google Scholar 

  • Hosford D, Dunbar G, Lieberman JA, Segreti A (2011) The α7 neuronal nicotinic receptor (NNR) agonist TC-5619 had beneficial effects and was generally well tolerated in a phase 2 trial in cognitive dysfunction in schizophrenia (CDS). 13th International Congress on Schizophrenia Research

    Google Scholar 

  • Houy E, Raux G, Thibaut F, Belmont A, Demily C, Allio G (2004) The promoter -194°C polymorphism of the nicotinic alpha 7 receptor gene has a protective effect against the P50 sensory gating deficit. Mol Psychiatry 9:320–322

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  • Hurst RS, Hajos M, Raggenbass M, Wall TM, Higdon NR, Lawson JA (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 25(17):4396–4405

    Article  PubMed  CAS  Google Scholar 

  • Jubelt LE, Barr RS, Goff DC, Logvinenko T, Weiss AP, Evins AE (2008) Effects of transdermal nicotine on episodic memory in non-smokers with and without schizophrenia. Psychopharmacology (Berl) 199(1):89–98

    Article  CAS  Google Scholar 

  • Judd L, McAdams L, Budnick B, Braff DL (1992) Sensory gating deficits in schizophrenia: new results. Am J Psychiatry 149:488–493

    PubMed  CAS  Google Scholar 

  • Kem WR, Abbott BC, Coates RM (1971) Isolation and structure of a hoplonemertine toxin. Toxicon 9:15–22

    Article  PubMed  CAS  Google Scholar 

  • Kem WR, Mahnir VM, Papke RL, Lingle CJ (1997) Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. J Pharmacol Exp Ther 283:979–992

    PubMed  CAS  Google Scholar 

  • Kem WR, Mahnir VM, Prokai L, Papke RL, Cao X, LeFrancois S, Wildeboer K, Prokai-Tatrai K, Porter-Papke J, Soti F (2004) Hydroxy metabolites of the Alzheimer’s drug candidate 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (GTS-21): their molecular properties, interactions with brain nicotinic receptors, and brain penetration. Mol Pharmacol 65:56–67

    Article  PubMed  CAS  Google Scholar 

  • Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, Keefe RSE, Mesholam-Gately R, Mintz J, Seidman LJ, Stover E, Marder SR (2008) The MATRICS consensus cognitive battery: part 2. Co-norming and standardization. Am J 165:214–220

    Google Scholar 

  • Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551

    Article  PubMed  CAS  Google Scholar 

  • Koike K, Hashimoto K, Takai N, Shimizu E, Komatsu N, Watanabe H (2005) Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr Res 76:67–72

    Article  PubMed  Google Scholar 

  • Kosten TP, Zhang XY, Liu SW, Liu L, Hong H (2011) Short-term tropisetron treatments improve deficits in auditory P50 suppression in schizophrenia: dose-response relationship. 13th International Congress on Schizophrenia Research Abstracts

    Google Scholar 

  • Kumari V, Cotter PA, Checkley SA, Gray JA (1997) Effect of acute subcutaneous nicotine on prepulse inhibition of the acoustic startle reflex in healthy male non-smokers. Psychopharmacology (Berl) 132(4):389–395

    Article  CAS  Google Scholar 

  • Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH (2000) Smoking and mental Illness: a population-based prevalence study. J Am Med Assoc 284:2606–2610

    Article  CAS  Google Scholar 

  • Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A (1998) Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected subpairs from the NIMH genetics initiative. Am J Med Genet 81:308–312

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M (2002) Association of promoter variants in the alpha-7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Lesage A, Kinklo T, Thuring J-W, Grantham C, Peters L, Lavreysen H, Shaban H, Stevens KE, Zheng L (2009) Characterization of JNJ-1930942, a novel positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Biochem Pharmacol 78(2.10):899–925

    Google Scholar 

  • Levin E, Wilson WH, Rose JE, McEvoy JP (1996) Nicotine-haloperidol interaction and cognitive performance in schizophrenics. Neuropsychopharmacology 15:429–436

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Conners CK, Silva D, Hinton SC, Meck WH, March J, Rose JE (1998) Transdermal nicotine effects on attention. Psychopharmacology (Berl) 140:135–141

    Article  CAS  Google Scholar 

  • Liu C-M, Hwu H-G, Lin M-W, Ou-Yang W-C, Lee SF-C, Fann CSJ (2001) Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13-14 in Taiwanese families. Am J Med Genet 105:658–661

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Pearlson G, Windemuth A, Ruano G, Perrone-Bizzozero N, Calhoun V (2009) Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel CA. Hum Brain Mapp 30:241

    Article  PubMed  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    Article  PubMed  CAS  Google Scholar 

  • Macor J, Gurley D, Lanthorn T, Loch J III, Mack RA, Mullen G (2001) The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent selective alpha-7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 11:319–321

    Article  PubMed  CAS  Google Scholar 

  • Mahnir VM, Lin B, Prokai-Tatrai K, Kem WR (1998) Pharmacokinetics and urinary excretion of DMXBA (GTS-21), a compound enhancing cognition. Biopharm Drug Dispos 19:147–151

    Article  PubMed  CAS  Google Scholar 

  • Marutle A, Zhang X, Court J, Piggot M, Johnson M, Perry R (2001) Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 22:115–126

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Freudenreich O, Wilson W (1999) Smoking and therapeutic response to clozapine in patients with schizophrenia. Biol Psychiatry 46:125–129

    Article  PubMed  CAS  Google Scholar 

  • McGaughy J, Decker MW, Sarter M (1999) Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology (Berl) 144:175–182

    Article  CAS  Google Scholar 

  • Meltzer HY, Gawryl M, Ward S, Dgetluck N, Bhuvaneswaran C, Koenig G, Palfreyman MG, Hilt DC (2011) EVP-6124, An alpha-7 nicotinic partial agonist, produces positive effects on cognition, clinical function, and negative symptoms in patients with chronic schizophrenia on stable antipsychotic therapy. 50th Annual Meeting American College of Neuropsychopharmacology

    Google Scholar 

  • Meyer EM, De Fiebre CM, Hunter BE, Simpkins CE, Frauworth N, De Fiebre NEC (1994) Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behaviors. Drug Dev Res 31:127–134

    Article  CAS  Google Scholar 

  • Meyer EM, Tay EE, Papke RL, Meyers C, Huang G, deFiebre CM (1997) 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rats α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res 768:49–56

    Article  PubMed  CAS  Google Scholar 

  • Myers CS, Robles O, Kakoyannis AN, Sherr JD, Avila MT, Blaxton TA (2004) Nicotine improves delayed recognition in schizophrenic patients. Psychopharmacology (Berl) 174:334–340

    Article  CAS  Google Scholar 

  • Nagamoto HT, Adler LE, McRae KA, Huettl P, Cawthra E, Gerhardt G (1999) Auditory P50 in schizophrenics on clozapine: improved gating parallels clinical improvement and changes in plasma 3-methoxy-4-hydroxyphenylglycol. Neuropsychobiology 39:10–17

    Article  PubMed  CAS  Google Scholar 

  • Nanri M, Yamamoto J, Miyake H, Watanabe H (1998) Protective effect of GTS-21, a novel nicotinic receptor agonist, on delayed neuronal death induced by ischemia in gerbils. Jpn J Pharmacol 76:23–29

    Article  PubMed  CAS  Google Scholar 

  • Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, Essock S, Fenton WS, Frese FJ, Gold JM, Goldberg T, Heaton RK, Keefe RSE, Kraemer H, Mesholam-Gately R, Seidman LJ, Stover S, Weinberger D, Young AS, Zalcman S, Marder SR (2008) The MATRICS consensus cognitive battery: part 1. Test selection, reliability, and validity. Am J Psychiatry 165:208–213

    Article  Google Scholar 

  • Neves-Pereira M, Bassett AS, Honer WG, Lang D, King NA, Kennedy JL (1998) No evidence for linkage of the CHRNA7 gene region in Canadian schizophrenia families. Am J Med Genet 81:361–363

    Article  PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, Svensson TH (1995) Nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol 76:157–162

    Article  PubMed  CAS  Google Scholar 

  • Nomikos GG, Schilström B, Hildebrand BE, Panagis G, Grenhoff J, Svensson TH (2000) Role of alpha-7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav Brain Res 113:97–103

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell CJ, Rogers BN, Bronk BS, Bryce DK, Coe JW, Cook KK, Duplantier AJ, Evard E, Hoffman WE, Hurst RS, Makland N, Mather RJ, McLean S, Nedza FM, O’Neill BT, Peng L, Qian W, Rottas MM, Sands SB, Schmidt AW, Shrikhande AV, Spracklin DK, Wong DF, Zhang AL (2010) Discovery of 4-(5-methyloxazolo[4,5-b]pyridine-2-yl)1,4-diazabicyclo[3.2.2]nonane (CP-810,123), a novel alpha 7 nicotinic acetylcholine receptor agonist for the treatment of cognitive disorders in schizophrenia: synthesis, SAR development, and in vivo efficacy in cognition model. J Med Chem 53:1222–1237

    Article  PubMed  CAS  Google Scholar 

  • Olincy A, Young DA, Freedman R (1997) Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psychiatry 42:1–5

    Article  PubMed  CAS  Google Scholar 

  • Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D (2006) An α7-Nicotinic cholinergic agonist enhances cognitive function in schizophrenia. Arch Gen Psychiatry 63:630–638

    Article  PubMed  CAS  Google Scholar 

  • O’Neill HC, Reiger K, Kem WR, Stevens KE (2003) DMXB, an alpha7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacology (Berl) 163:332–339

    Article  CAS  Google Scholar 

  • Papke RL, Schiff HC, Jack BA, Horenstein NA (2005) Molecular dissection of tropisetron, an alpha-7 nicotinic acetylcholine receptor-selective partial agonist. Neurosci Lett 378:140–144

    Article  PubMed  CAS  Google Scholar 

  • Petrovsky N, Quednow BB, Ettinger U, Schmechtig A, Collier DA, Maier W, Wagner M, Kumari V (2010) Sensimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy volunteers. Neurophsychopharmacology 35:1429–1439

    Article  CAS  Google Scholar 

  • Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V (2007) SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32:17–34

    Article  PubMed  CAS  Google Scholar 

  • Postma P, Gray JA, Sharma T, Geyer M, Mehrotra R, Das M, Zachariah E, Hines M, Williams SC, Kumari V (2006) A behavioral and functional investigation into the effects of nicotine on sensoimotor gating in healthy subjects and persons with schizophrenia. Psychopharmacology 184:589–599

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, van Goethem NP, Chesworth R, Shapiro G, Boess FG, Methfessel C, Reneerkens OAH, Flood DG, Hilt D, Gawyl M, Bertrand D, Kònig G (2012) EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology 62:1099–1110

    Article  PubMed  CAS  Google Scholar 

  • Riley BP, Makoff A, Mogudi-Carter M, Jenkins T, Williamson R, Collier D (2000) Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in southern African Bantu families. Am J Med Genet 96:196–201

    Article  PubMed  CAS  Google Scholar 

  • Ross RG, Olincy A, Harris JG, Radant A, Hawkins M, Adler LE (1999) Evidence for bilineal inheritance of physiological indicators of risk in childhood-onset schizophrenia. Am J Med Genet 88:188–199

    Article  PubMed  CAS  Google Scholar 

  • Sacco KA, Termine A, Seyal A, Dudas MM, Vessicchio JC, Krishnan-Sarin S (2005) Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia. Arch Gen Psychiatry 62:649–659

    Article  PubMed  Google Scholar 

  • Schreiber R, Dalmus M, De Vry J (2002) Effects of alpha 4/beta 2- and alpha 7-nicotine acetylcholine receptor agonists on prepulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology (Berl) 159:248–257

    Article  CAS  Google Scholar 

  • Sharma T, Reed C, Aasen I, Kumari V (2006) Cognitive effects of adjunctive 24-weeks Rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind investigation. Schizophr Res 85:73–83

    Article  PubMed  Google Scholar 

  • Sherr JD, Myers C, Avila MT, Elliot A, Blaxton TA, Thaker GK (2002) The effects of nicotine on specific eye tracking measures in schizophrenia. Biol Psychiatry 52:721–728

    Article  PubMed  CAS  Google Scholar 

  • Shirazi-Southall S, Rodriguez DE, Nomikos GG (2002) Effects of typical and atypical antipsychotics and receptor selective compounds on acetylcholine efflux in the hippocampus of the rat. Neuropsychopharmacology 26:583–594

    Article  PubMed  CAS  Google Scholar 

  • Siegal C, Waldo MC, Mizner G, Adler LE, Freedman R (1984) Deficits in sensory gating in schizophrenic patients and their relatives. Arch Gen Psychiatry 41:607–612

    Article  Google Scholar 

  • Simosky JK, Stevens KE, Kem WR, Freedman R. (2001) Intragastric DMXB-A, an alpha7 nicotinic agonist, improves deficient sensory inhibition in DBA/2 mice. Biological Psychiatry. 50(7):493–500

    Article  PubMed  CAS  Google Scholar 

  • Simosky JK, Stevens KE, Adler LE, Freedman R (2003) Clozapine improves deficient inhibitory auditory processing in DBA/2 mice, via a nicotinic cholinergic mechanism. Psychopharmacology (Berl) 165:386–396

    CAS  Google Scholar 

  • Smith RC, Singh A, Infante M, Khandat A, Kloos A (2002) Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology 27:479–497

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Warner-Cohen J, Matute M, Butler E, Kelly E, Vaidhyanathaswamy S (2006) Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology 31(3):637–643

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Lindenmayer JP, Davis JM, Cornwell J, Noth K, Gupta S, Sershen H, Lajtha A (2009) Cognitive and antismoking effects of vanenicline in patients with schizophrenia or schizoaffective disorder. Schizophr Res 110:145–155

    Article  Google Scholar 

  • Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, Dickenson J, James B, Fingerlin TE, Wagner B, Hodgkinson C, Graw S, Ross RG, Freedman R, Leonard S. (2009) Association of the 5'-upstream regulatory region of the alpha7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophrenia Research. 109(1–3):102–12

    Article  PubMed  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Wear KD (1997) Normalizing effects of nicotine and a novel nicotinic agonist on hippocampal auditory gating in two animal models. Pharmacol Biochem Behav 57:869–874

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective alpha-7 nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl) 136:320–327

    Article  CAS  Google Scholar 

  • Stevens KE, Kem WR, Freedman R (1999) Selective alpha 7 nicotinic receptor stimulation normalizes chronic cocaine-induced loss of hippocampal sensory inhibition in C3H mice. Biol Psychiatry 46:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Stokes C, Papke JK, Horenstein NA, Kem WR, McCormack TJ, Papke RL (2004) The structural basis for GTS-21 selectivity between human and rat nicotinic alpha7 receptors. Mol Pharmacol 66:14–24

    Article  PubMed  CAS  Google Scholar 

  • Stone J, OíDonovan M, Gurling H, Kirov G, Blackwood D, Corvin A, Craddock N, Gill M, Hultman C, Lichtenstein P (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Article  CAS  Google Scholar 

  • Svensson TH, Grenhoff J, Engberg G (1990) Effect of nicotine on dynamic function of brain catecholamine neurons. Ciba Found Symp 152:169–180

    PubMed  CAS  Google Scholar 

  • Sydserff S, Sutton EJ, Song D, Quirk MC, Maciag C, Li C, Jonak G, Gurley D, Gordon JC, Christian EP, Doherty JJ, Hudzik T, Johnson E, Mrzljak L, Piser T, Smagin GN, Wang Y, Widzowski D, Smith JS (2009) Selective α7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 78:880–888

    Article  PubMed  CAS  Google Scholar 

  • Taiminen TJ, Salokangas RKR, Saarijärvi S, Niemi H, Lehto H, Ahola V (1998) Smoking and cognitive deficits in schizophrenia: a pilot study. Addict Behav 23:263–266

    Article  PubMed  CAS  Google Scholar 

  • Tregellas JR, Olincy A, Johnson L, Tanabe J, Shatti S, Martin LF, Singel D, Du YP, Soti F, Kem WR (2010) Functional magnetic resonance imaging of effects of a nicotinic agonist in schizophrenia. Neuropsychopharmacology 35:938–942

    Article  PubMed  CAS  Google Scholar 

  • Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L, Martin LF, Soti F, Kem WR, Leonard S, Freedman R (2011) Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 69(1):7–11

    Article  PubMed  CAS  Google Scholar 

  • Tsuang DW, Skol AD, Faraone SV, Bingham S, Young KA, Prabhudesai S (2001) Examination of genetic linkage of chromosome 15 to schizophrenia in a large veterans affairs cooperative study sample. Am J Med Genet 105:662–668

    Article  PubMed  CAS  Google Scholar 

  • Tung CS, Grenhoff J, Svensson TH (1990) Nicotine counteracts midbrain dopamine cell dysfunction induced by prefrontal cortex inactivation. Acta Physiol Scand 138:427–428

    Article  PubMed  CAS  Google Scholar 

  • Turchi J, Holley LA, Sarter M (1995) Effects of nicotinic acetylcholine receptor ligands on behavioral vigilance in rats. Psychopharmacology (Berl) 118:195–205

    Article  CAS  Google Scholar 

  • Venables PH (1967) Input dysfunction in schizophrenia. In: Maher BA (ed) Progress in experimental personality research. Academic, Orlando, FL, pp 1–64

    Google Scholar 

  • Waldo MC, Carey G, Myles-Worsley M, Cawthra E, Adler LE, Nagamoto HT (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psychiatry Res 39:257–268

    Article  PubMed  CAS  Google Scholar 

  • Wallace TL, Chiu H, Dao DA, Lowe DA, Porter R, Santarelli L (2009) R3487/MEM 3454, a novel nicotinic alpha 7 receptor partial agonist, improves attention and working memory performance in cynomolgus macaques. Biochem Pharmacol 78(2):899–925

    Google Scholar 

  • Ward PB, Hoffer LD, Liebert B, Catts SV, O’Donnell M, Adler LE (1996) Replication of a P50 auditory sensory gating deficit in Australian patients with schizophrenia. Psychiatry Res 64:121–135

    Article  PubMed  CAS  Google Scholar 

  • Williams JM, Ziedonis DM, Abanyie F, Steinberg ML, Foulds J, Benowitz NL (2005) Increased nicotine and cotinine levels in smokers with schizophrenia and schizoaffective disorder is not a metabolic effect. Schizophr Res 79(2–3):323–335

    Article  PubMed  Google Scholar 

  • Williams JM, Gandhi KK, Lu SE, Kumar S, Shen J, Foulds J (2010) Higher nicotine levels in schizophrenia compared with controls after smoking a single cigarette. Nicotine Tob Res 12(8):855–859

    Article  PubMed  CAS  Google Scholar 

  • Wishka DG, Walker DP, Yates KM, Reitz SC, Shaojuan J, Meyers JK (2006) Discovery of N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the α7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure-activity relationship. J Med Chem 49:4425–4436

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS, Li YT, Kem WR (1994) A nicotinic agonist (GTS-21), eyeblink classical conditioning, and nicotinic receptor binding in rabbit brain. Brain Res 645:309–317

    Article  PubMed  CAS  Google Scholar 

  • Woodruff-Pak DS (2003) Mecamylamine reversal by nicotine and by a partial alpha-7 nicotinic acetylcholine receptor agonist (GTS-21) in rabbits tested with delay eye blink classical conditioning. Behav Brain Res 143:159–167

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Pato MT, Dalla Torre C, Medeiros H, Carvalho C, Basile VS (2001) Evidence of linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. Am J Med Genet 105:669–674

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Olincy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olincy, A., Freedman, R. (2012). Nicotinic Mechanisms in the Treatment of Psychotic Disorders: A Focus on the α7 Nicotinic Receptor. In: Geyer, M., Gross, G. (eds) Novel Antischizophrenia Treatments. Handbook of Experimental Pharmacology, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25758-2_8

Download citation

Publish with us

Policies and ethics