Subgroup analysis of Internet addiction (Y-IAT ≥50 & Y-IAT ≥40, respectively) based on the fixed effect model
Subgroup | Category | No. of studies | Events/N | Pooled prevalence (95% CI) (%) | Heterogeneity | χ² (P value) | |
I2 | T | ||||||
Gender | Male (Y-IAT≥50) | 22 | 1347/4325 | 32.5 (31.0 to 33.9) | 48.5 | 31.1 | 238.9 (p<0.001) |
Female (Y-IAT≥50) | 22 | 842/4851 | 20.2 (18.9 to 21.5) | 48.8 | 43.2 | ||
Male (Y-IAT≥40) | 6 | 513/1117 | 56.8 (53.6 to 60.1) | 49.3 | 58.7 | 0.2 (p=0.681) | |
Female (Y-IAT≥40) | 6 | 492/1051 | 48.9 (45.5 to 52.3) | 49.3 | 54.8 | ||
Sampling method | Convenience (Y-IAT≥50) | 27 | 2464/14373 | 18.2 (17.6 to 18.9) | 48.9 | 24.4 | 28.7 (p<0.001) |
Random (Y-IAT≥50) | 15 | 1320/6528 | 22.5 (21.4 to 23.7) | 49.3 | 37.0 | ||
Convenience (Y-IAT≥40) | 5 | 402/1137 | 33.1 (29.9 to 36.5) | 49.6 | 66.0 | 14.8 (p<0.001) | |
Random (Y-IAT≥40) | 3 | 715/1679 | 44.7 (42.1 to 47.2) | 49.8 | 54.7 | ||
Stream of education | Medical & Engineering (Y-IAT≥50) | 33 | 2465/13600 | 19.7 (19.0 to 20.4) | 48.8 | 26.1 | 0.4 (p=0.542) |
Others (Y-IAT≥50) | 9 | 1299/7301 | 18.4 (17.5 to 19.4) | 49.6 | 38.0 | ||
Medical & Engineering (Y-IAT≥40) | 6 | 527/1662 | 29.5 (27.1 to 32.0) | 49.5 | 54.9 | 107.3 (p<0.051) | |
Others (Y-IAT≥40) | 2 | 590/1154 | 53.6 (50.6 to 56.6) | 49.7 | 68.3 | ||
Quality score | ≤6 (Y-IAT≥50) | 21 | 1535/7217 | 22.7 (21.7 to 23.8) | 49.2 | 37.1 | 74.3 (p<0.001) |
≥7 (Y-IAT≥50) | 21 | 2249/13684 | 17.4 (16.7 to 18.0) | 48.9 | 21.3 | ||
≤6 (Y-IAT≥40) | 3 | 306/587 | 47.5 (42.6 to 52.5) | 49.7 | 73.1 | 47.9 (p<0.001) | |
≥7 (Y-IAT≥40) | 5 | 811/2227 | 39.2 (37.0 to 41.5) | 49.7 | 55.0 | ||
Year of publication | 2014–2017 (Y-IAT≥50) | 20 | 1572/8774 | 19.9 (19.0 to 20.8) | 49.1 | 33.2 | 0.3 (p=0.620) |
2018–2020 (Y-IAT≥50) | 22 | 2212/12162 | 19.9 (19.1 to 20.7) | 49.1 | 26.5 |
N, total number of samples; Y-IAT, Young Internet Addiction Test.