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WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Attention- deficit/hyperactivity disorder (ADHD) and 
type 2 diabetes (T2D) have high comorbidity and 
might be risk factors for each other. The causal as-
sociations and shared genetic architecture between 
ADHD and T2D need to be further elucidated.

WHAT THIS STUDY ADDS
 ⇒ ADHD may remarkably increase the risk of T2D, 
while T2D may modestly increase the risk of ADHD. 
ADHD and T2D have substantial shared genetics 
with one another.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ More care should be taken for patients with ADHD 
with abnormal glucose metabolism. Surveillance of 
blood glucose levels in patients with ADHD may be 
necessary for the early diagnosis of diabetes.

ABSTRACT
Background Type 2 diabetes (T2D) is a chronic metabolic 
disorder with high comorbidity with mental disorders. 
The genetic links between attention- deficit/hyperactivity 
disorder (ADHD) and T2D have yet to be elucidated.
Aims We aim to assess shared genetics and potential 
associations between ADHD and T2D.
Methods We performed genetic correlation, two- sample 
Mendelian randomisation and polygenic overlap analyses 
between ADHD and T2D. The genome- wide association 
study (GWAS) summary results of T2D (80 154 cases 
and 853 816 controls), ADHD2019 (20 183 cases and 
35 191 controls from the 2019 GWAS ADHD dataset) and 
ADHD2022 (38 691 cases and 275 986 controls from the 
2022 GWAS ADHD dataset) were used for the analyses. 
The T2D dataset was obtained from the DIAGRAM 
Consortium. The ADHD datasets were obtained from the 
Psychiatric Genomics Consortium. We compared genome- 
wide association signals to reveal shared genetic variation 
between T2D and ADHD using the larger ADHD2022 
dataset. Moreover, molecular pathways were constructed 
based on large- scale literature data to understand the 
connection between ADHD and T2D.
Results T2D has positive genetic correlations with 
ADHD2019 (r

g=0.33) and ADHD2022 (rg=0.31). Genetic 
liability to ADHD2019 was associated with an increased 
risk for T2D (odds ratio (OR): 1.30, p<0.001), while 
genetic liability to ADHD2022 had a suggestive causal 
effect on T2D (OR: 1.30, p=0.086). Genetic liability to 
T2D was associated with a higher risk for ADHD2019 
(OR: 1.05, p=0.001) and ADHD2022 (OR: 1.03, p<0.001). 
The polygenic overlap analysis showed that most causal 
variants of T2D are shared with ADHD2022. T2D and 
ADHD2022 have three overlapping loci. Molecular pathway 
analysis suggests that ADHD and T2D could promote the 
risk of each other through inflammatory pathways.
Conclusions Our study demonstrates substantial shared 
genetics and bidirectional causal associations between 
ADHD and T2D.

INTRODUCTION
Type 2 diabetes (T2D) is a common meta-
bolic disorder that affects approximately 
10.5% of people 20–79 years old.1 The disease 
shortens life expectancy and burdens public 
healthcare systems. In addition to age, a 

combination of genetic and environmental 
factors may contribute to the development 
of T2D. These factors influence the onset, 
progression and associated comorbidities of 
the disease. Numerous risk factors have been 
reported for the illness, including adiposity, 
metabolic syndrome, sedentary lifestyle and 
cardiovascular conditions.2 3 Conversely, T2D 
and abnormal glucose metabolism are risk 
factors for myriad health conditions.4–6

The high comorbidity of T2D with major 
mental disorders is well established.7 It was 
estimated that the prevalence of T2D ranges 
from 5% to 22% in patients with psychiatric 
disorders.8 Attention- deficit/hyperactivity 
disorder (ADHD) is a common neurodevel-
opmental disorder in children with high heri-
tability. ADHD affects approximately 6%–7% 
of people aged 18 and under when diagnosed 
via the Diagnostic and Statistical Manual of 
Mental Disorders, Fourth Edition (DSM- IV) 
criteria.9 It has been found that 30%–50% 
of people diagnosed in childhood continue 
to have ADHD into adulthood.10 ADHD 
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Figure 1 Flowchart of the study. ADHD was the exposure and T2D was the outcome in the MR analysis. ADHD, attention- 
deficit/hyperactivity disorder; IV, instrumental variable; SNPs, single nucleotide polymorphisms; T2D, type 2 diabetes.

Figure 2 Polygenic overlaps between T2D and ADHD2022. 
Venn diagrams of unique and shared causal variants between 
T2D and ADHD2022. The numbers indicate the estimated 
quantity of causal variants (in thousands). ADHD, attention- 
deficit/hyperactivity disorder; T2D, type 2 diabetes.

substantially shares genetics with other common mental 
disorders, including major depressive disorder.11–14 In 
one of the recent studies, an association of the genetic 
liability to ADHD, as captured by the polygenic risk score, 
with T2D did not survive multiple test corrections, while 
the risk for type 1 diabetes (T1D) was uncovered with an 
odds ratio (OR) approximated as 1.21.15

The Mendelian randomisation (MR) approach has 
been widely used to explore causal associations between 
traits.16–19 A recent MR study reported a causal effect of 
ADHD on T2D (OR=1.14) and vice versa (OR=1.09),20 
thus confirming earlier reports that utilised bivariate 
latent causal variable analysis.21 Additionally, evidence 
from epidemiological studies suggests that maternal 
prepregnancy diabetes is associated with an increased 
risk for ADHD with a modest effect size.22 However, the 
mechanisms underlying the connection between ADHD 
and T2D are largely unknown.

In the present study, we used two larger datasets on 
ADHD to validate the causal associations between this 
condition and T2D. Furthermore, we performed genetic 
correlation, polygenic overlap and literature- based anal-
yses to evaluate genetic relationships between T2D and 
ADHD and explore the underlying mechanisms.

METHODS
Data sources and study design
The flowchart of the study is shown in figure 1. This study 
is based on publicly available genome- wide association 
study (GWAS) summary results of T2D and ADHD. Previ-
ously, Mahajan et al performed a multiancestry GWAS of 
T2D in 180 834 cases and 1 159 055 controls.23 We used 
the GWAS summary result of T2D of the European popu-
lation from the DIAbetes Genetics Replication And Meta- 
analysis (DIAGRAM) Consortium, including 80 154 T2D 
cases and 853 816 controls.23 Demontis et al performed a 
GWAS on ADHD in 2019 (ADHD2019)24 and expanded 
the sample size in 2022 (ADHD2022).25 The GWAS 

summary result of ADHD2019 included 20 183 cases and 
35 191 controls.24 The ADHD2019 dataset contained ~210 
000 missing rsIDs. We filled in most of these missing rsIDs 
using reference datasets. The GWAS summary result of 
ADHD2022 included 38 691 cases and 275 986 controls.25 
The two ADHD datasets were obtained from the Psychi-
atric Genomics Consortium (https://pgc.unc.edu/). All 
participants were of European origin.

Genetic correlation analysis
The genetic correlation between T2D and ADHD was 
calculated using linkage disequilibrium (LD) score 
regression.26 The 1 000 Genome Project phase 3 was used 
to estimate the LD structure for European populations.26 
Single nucleotide polymorphisms (SNPs) were filtered 
by 1.1 million variants, a subset of 1 000 Genomes and 
Haplotype Map (HapMap) 3, with minor allele frequency 
(MAF) above 0.05.
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Table 1 Causal associations between T2D and ADHD

Exposure Outcome Method b (SE) OR (95% CI) N_IV P value

ADHD2019 T2D IVW 0.262 (0.058) 1.30 (1.16 to 1.46) 10 6.49E−06

ADHD2019 T2D WM 0.303 (0.074) 1.35 (1.17 to 1.56) 10 3.79E−05

ADHD2019 T2D MR Egger 0.465 (0.275) 1.59 (0.93 to 2.73) 10 0.129

ADHD2022 T2D IVW 0.264 (0.154) 1.30 (0.96 to 1.76) 26 0.086

ADHD2022 T2D WM 0.374 (0.128) 1.45 (1.13 to 1.87) 26 3.51E−03

ADHD2022 T2D MR Egger −0.262 (0.544) 0.77 (0.27 to 2.23) 26 0.634

T2D ADHD2019 IVW 0.045 (0.014) 1.05 (1.02 to 1.07) 194 1.06E−03

T2D ADHD2019 WM 0.035 (0.018) 1.04 (1.00 to 1.07) 194 0.047

T2D ADHD2019 MR Egger 0.022 (0.045) 1.02 (0.94 to 1.12) 194 0.635

T2D ADHD2022 IVW 0.028 (0.008) 1.03 (1.01 to 1.04) 194 3.65E−04

T2D ADHD2022 WM 0.021 (0.008) 1.02 (1.00 to 1.04) 194 0.014

T2D ADHD2022 MR Egger 0.002 (0.026) 1.00 (0.95 to 1.05) 194 0.952

ADHD, attention- deficit/hyperactivity disorder; CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomisation; N_IV, number 
of instrumental variables; OR, odds ratio; SE, standard error; T2D, type 2 diabetes; WM, weighted median.

Polygenic overlap analysis
Polygenic overlap, which measures the fraction of genetic 
variants causally associated with two traits over the total 
number of causal variants across a pair of traits involved, 
was analysed by MiXeR using default parameters.27 The 
test statistics of MiXeR consider the effects of LD struc-
ture, MAF, sample size, cryptic relationships and sample 
overlap. We evaluated the sets of causal variants shared 
between T2D and ADHD.

Two-sample MR analysis
The main analysis was performed using the inverse- 
variance weighted method and complemented with the 
weighted median and MR- Egger methods implemented 
in TwoSampleMR.28 For each MR analysis, SNPs with 
genome- wide significance (p<5×10–8) were selected as 
instrumental variables (IVs) and further pruned using 
a clumping r2 cut- off of 0.001 within a 10 Mb window. 
The intercept from the MR- Egger model was used as a 
measure of directional pleiotropy. The heterogeneity in 
the MR analysis was evaluated by Cochran’s Q test and I2 
statistics (p<0.050 and I2>0.25).

Overlapping genomic variation between T2D and ADHD2022
To identify overlapping risk genes between T2D and 
ADHD, we retrieved genomic loci for the two traits from 
the two GWAS datasets. The functional mapping and 
annotation (FUMA) software was used to map SNPs to 
genes and identify LD- independent genomic regions.29 
All genes located within the 10 kb vicinity of each variant 
were mapped. Independent significant SNPs were 
extracted when their p value was genome- wide significant 
(p<5×10–8) and independent of each other (r2<0.6). The 
lead SNPs were identified as a subset of the independent 
significant SNPs in LD with each other at r2<0.1 within 
a 500 kb window. Genomic risk loci were identified by 
merging lead SNPs located at a distance of less than 500 kb 
from each other. Clumping procedures were carried out 

in accordance with the European 1 000 Genomes Project 
phase 3 reference panels. Due to extensive LD, the entire 
major histocompatibility complex locus was merged into 
one region (chr6: 25–35 Mb). Regional association results 
of the loci were plotted using LocusZoom.30

Knowledge-based analysis
At the molecular level, the potential connection between 
ADHD and T2D was explored by structured, large- scale 
mining of literature in the Pathway Studio (www.pathway-
studio.com) environment,31 followed by the construction 
of a set of molecular pathways connecting ADHD and 
T2D. We identified lists of known downstream targets 
and upstream regulators of ADHD and T2D. For each 
extracted relationship, references were evaluated manu-
ally for quality control, and then all non- directional rela-
tionships, for example, ‘change’ and ‘alteration’, were 
removed. The remaining directional relationships, for 
example, ‘decrease’, ‘upregulation’ and ‘stimulation’, 
were mapped, and a set of molecular pathways connecting 
ADHD and T2D was built.

We termed the proteins connecting ADHD and T2D 
‘mediating proteins’ and their coding genes ‘mediating 
genes’. Kyoto Encyclopedia of Genes and Genomes 
(KEGG)- based pathway enrichment analyses of the medi-
ating genes were conducted using FUMA.29

RESULTS
Genetic correlation analysis
The genetic correlation analysis indicated that T2D 
has significant positive genetic correlations with ADHD 
in both the ADHD2019 (rg=0.33 (0.03), p<0.001) and 
ADHD2022 (rg=0.31 (0.02), p<0.001) datasets.

Polygenic overlap analysis
Polygenic overlap analysis identified 2 555 (389) and 7 808 
(363) risk variants for T2D and ADHD2022, respectively 
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Figure 3 GWAS results of ADHD2022 and T2D. (A) Manhattan plot of ADHD2022 and T2D. The x- axis is the chromosomal 
position of SNPs, and the y- axis is the significance of the SNPs (−log10P). Each horizontal dashed line denotes the genome- 
wide significance level of 5E−8. Red arrows indicate the three overlapping genomic loci between ADHD and T2D. (B) Three 
overlapping loci between ADHD2022 and T2D. ADHD, attention- deficit/hyperactivity disorder; GWAS, genome- wide association 
study; SNP, single nucleotide polymorphism; T2D, type 2 diabetes.
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Figure 4 Pathway and protein–protein interaction analyses. (A) ADHD- driven molecular pathway influencing T2D. Quantitative 
genetic changes driven by ADHD exert more negative (highlighted in red) than positive (highlighted in green) effects on T2D. 
‘--+>’ represents positive regulation; ‘--|’ represents negative regulation. (B) T2D- driven molecular pathway influencing ADHD. 
(C) KEGG- based pathway analysis of the mediating genes. ADHD, attention- deficit/hyperactivity disorder; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; T2D, type 2 diabetes.

(figure 2). The ADHD polygenicity was much higher than 
that of T2D. The two disorders have 1 789 common risk 
variants in common. Therefore, T2D shared most of its 

causal variants with ADHD2022 (70%). The vast majority 
of the risk variants shared between T2D and ADHD2022 
have the same effect directions (90%).
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Mendelian randomisation analysis
In the MR analysis of the causal effect of ADHD on T2D, 
a total of 10 and 26 IVs were obtained for the ADHD2019 
and ADHD2022 datasets, respectively. We found that 
genetic liabilities to ADHD2019 conferred a causal 
effect on T2D (OR: 1.30, 95% confidence interval (CI): 
1.16 to 1.46, p<0.001), while in the ADHD2022 dataset, 
the causal effects of genetic liability to ADHD2022 on 
T2D were suggestive (OR: 1.30, 95% CI: 0.96 to 1.76, 
p=0.086).

In the MR analysis of the causal effect of T2D on ADHD, 
a total of 194 IVs were obtained. The results showed that 
genetic liability to T2D was associated with a higher risk 
for ADHD in both datasets (ADHD2019 (OR: 1.05, 95% 
CI: 1.02 to 1.07, p<0.001) and ADHD2022 (OR: 1.03, 
95% CI: 1.01 to 1.04, p<0.001)) (table 1).

MR sensitivity analysis showed that the directions of 
causal effect estimates across the set of applied techniques 
were largely the same (table 1 and online supplemental 
table 1). The MR- Egger regression did not support 
directional pleiotropy in the MR analysis (MR- Egger 
intercept<0.01, p>0.050). The evidence of directional 
pleiotropy for the IVs from the MR- Egger regression was 
minimal, indicating the robustness of the main results. 
However, there was evidence supporting the potential 
heterogeneity in the causal effect of T2D on ADHD 
(Cochran’s p<0.001, I2=0.328).

Overlapping genomic variation between T2D and ADHD2022
In FUMA analysis, a total of 27 and 199 genomic loci 
were associated with ADHD2022 and T2D, respectively 
(figure 3). Three genomic loci overlapped between 
T2D and ADHD2022 (figure 3). These loci included 
seven protein- coding genes shared between ADHD and 
T2D, including CAMKV, MST1R, MON1A, RBM6, RBM5 
(3p21.31), ARHGAP39 (8q24.3) and NKX2- 2 (20p11).

Genetic pathways connecting T2D to ADHD
Literature- based pathway analysis identified a total of 10 
mediating genes from ADHD and T2D. ADHD positively 
influenced T2D through seven molecules and negatively 
influenced T2D through three molecules (figure 4A). 
Therefore, the overall effect of ADHD on T2D could be 
promoted at the molecular level. KEGG- based pathway 
enrichment analysis in FUMA showed that the seven 
genes are involved in immunity- related molecular path-
ways, including asthma, allograft rejection and cytokine–
cytokine- receptor interaction (figure 4C).

On the other hand, T2D can positively influence ADHD 
through three molecules and negatively influence ADHD 
through one molecule (figure 4B).

DISCUSSION
Main findings
This study aimed to determine the genetic correlation 
between T2D and ADHD. Our analysis supports the posi-
tive relationship between these two conditions. We used a 

bivariate Gaussian mixture model to evaluate an overlap 
between causal variants of T2D and ADHD. T2D shares 
the majority of its causal variants (70%) with ADHD. 
The vast majority of these causal variants had concor-
dant effect directions (90%), consistent with the positive 
genetic correlation between them.

Our MR analyses indicated that the relationships 
between T2D and ADHD are bidirectional and causal, 
with a much larger effect exerted by ADHD on T2D 
than the reverse. The diagnosis of ADHD was associated 
with a 30% increased risk for T2D, while the diagnosis 
of T2D was associated with a 3%–5% increased risk for 
ADHD. Tao et al analysed the causal association between 
ADHD2019 and T2D.20 Compared with Tao et al’s study, 
our ADHD2019 dataset yielded more IVs (10 vs 8), which 
may explain why our study detected a more robust result. 
Of note, ADHD conferred a larger effect on T2D than 
vice versa, which may be due to the much larger genetic 
polygenicity detected for ADHD than for T2D. A recent 
study by Garcia- Marin et al revealed that genetic liability 
to T2D increases the risk of ADHD in children.21 Another 
recent analysis showed that genetic correlations between 
ADHD and metabolic syndrome, a precursor for T2D, are 
positive, and this relationship is primarily mediated by 
the pathway of insulin processing/secretion.32 Separately, 
positive genetic relationships were noted for ADHD and 
various insulin- related somatic traits.32

When the functional pathway connecting ADHD and 
T2D was drawn based on literature data, the majority of 
identified molecules promoted comorbidity rather than 
being discordant in their effects (figure 4). The ADHD- 
driven T2D- promoting molecules were represented 
mostly by soluble cytokines and biomarkers of endothelial 
inflammation, including vascular cell adhesion molecule 
1 and intercellular adhesion molecule 1. While the role 
of systemic inflammation in T2D pathophysiology is well 
established,33 our study supports the previously proposed 
hypothesis that emphasises inflammation as an important 
part of ADHD pathophysiology.34

Our cross- trait T2D and ADHD analysis revealed three 
novel loci harbouring seven protein- coding genes. The 
shared pathophysiology of these two diseases may be 
mediated by the pleiotropic effects of these genes, at least 
in part. The list of pleiotropic risk factors acting across 
T2D and ADHD includes CAMKV, MST1R, MON1A, 
RBM6, RBM5 (3p21.31), ARHGAP39 (8q24.3), and 
NKX2- 2 (20p11).

Limitations
This study measured only genetic liability for both diseases 
and did not consider the effects of environmental factors; 
therefore, its conclusion may be limited in its scope. Some 
factors, including intelligence and education, may influ-
ence both ADHD and T2D.14 35 These factors may mediate 
the associations between these two conditions. ADHD and 
autism spectrum disorder (ASD) are commonly comorbid 
and share substantial liability.13 14 However, our study did not 
include ASD, which warrants further investigation.
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Implications
This study provides evidence of the genetic association 
between T2D and ADHD. Several immune system genes were 
identified to be common to the two diseases. In summary, 
our findings suggest that T2D and ADHD share substantial 
genetic components that are mutual risk factors promoting 
comorbidity. Our findings point to possible transcriptional 
coregulation of diabetes and ADHD- promoting molecular 
pathways that these nosological entities may share.
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