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Summary
Diagnostic tests are usually based on some quantitative 
biomarkers. Two key parameters used to characterise 
the quality of a test are test sensitivity and specificity. 
Predictive values of the disease status based on test 
results are also of interest in medical research and public 
health management. In this paper, we study the relations 
among sensitivity, specificity and predictive values of the 
test. The core concept is risk function, which is assumed 
to be an increasing function of the biomarker. Our results 
show that test sensitivity and specificity change in 
opposite directions. The positive predictive value and the 
sensitivity also change in opposite directions. Likewise, 
the negative predictive value and the specificity change in 
opposite directions.

Introduction
The COVID-19 pandemic has been soaring 
around the globe since March 2020.1 Every 
day, millions of people in the world get 
tested, and thousands of new cases are 
reported. More than 1.5 million died of the 
disease in 2020. Like many other infectious 
diseases, an effective way to stop the spread 
of the COVID-19 is to separate the infected 
and susceptible individuals for a period to 
time. For this purpose, we need to develop an 
efficient test to accurately identify those who 
are infected in the population.2 First, a good 
test can identify infected individuals in time 
so that they can get appropriate treatment 
immediately if they are in a serious situation. 
Second, we can separate the infected individ-
uals from uninfected people in time, espe-
cially those at high risk. Current data show 
that age is an important risk factor for COVID-
19. The risk increases significantly with age.3–7 
People in nursing homes are usually of older 
ages and are particularly vulnerable to the 
virus. The mortality rate of COVID-19 in 
nursing homes is still very high. Therefore, it 
is extremely important for a test to correctly 
identify infected individuals and separate 
them from residents in nursing homes. To 
the general public, it is very important to find 
infected individuals in the community so that 

medical resources can be arranged to treat 
the infected individual and protect the rest 
of the population. A lot of chaos happened 
at the beginning of the COVID-19 pandemic. 
For example many people went to hospitals to 
seek help as they were not sure whether they 
were infected by the virus SARS-CoV-2, due 
to guidance not being clear in the beginning. 
Unfortunately, some became infected after 
they went to the hospital for other diseases. 
This kind of tragedy could have been miti-
gated if we had an effective test at the begin-
ning of the pandemic.

In this report, we discuss measures of 
quality for a diagnostic test and the accuracy 
of testing using this diagnostic test. The paper 
is organised as follows. We first give a brief 
introduction of sensitivity and specificity of a 
test, and then discuss the positive and nega-
tive predictive values. We then explore the 
monotone relations among Se, Sp, positive 
predictive value (PPV) and negative predic-
tive value (NPV). Numerical results are 
used to illustrate the relationship among 4 
quantities.

Sensitivity and specificity of a test
For each randomly selected individual from 
the study population, we use a binary outcome 
D to denote the disease status (D=1 and 0 for 
disease and non-disease, respectively) and 
another binary outcome variable T to denote 
the test result, where T=1 and 0 for positive 
(the test says the individual has the disease) 
and negative (the test says the individual 
does not have the disease), respectively. Let 
p denote the prevalence (proportion) of the 
diseased individuals in the study population. 
Without loss of generality, assume 0 < p < 1. 
The prevalence is a population property and 
is independent of quality of a diagnostic test. 
In the following discussion, we assume that p 
is fixed.

We use P(A) to denote the probability of an 
event A. Therefore, p=P{D=1}, the probability 
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that a randomly selected individual has the disease of 
interest. We also use P(A|B) to denote the conditional 
probability of event A given event B, assuming P(B)>0.

Ideally, a perfect test correctly distinguishes between 
diseased and non-diseased individuals; it reports posi-
tive for all diseased individuals and negative for all non-
diseased individuals. However, this is almost impossible 
for any test to achieve due to many reasons. Generally, 
a diagnostic makes two types of mistake, as it may assign 
negative to a diseased individual and positive to a non-
diseased individual.

We use two parameters to characterise the behaviour 
of the test.8 The sensitivity (Se), also called the true posi-
tive rate (TPR), is the probability that the test assigns a 
diseased individual as positive. It shows how sensitive the 
test is to detecting the disease. A perfect test has the sensi-
tivity of 100%. However, 100% sensitivity does not mean 
the test is perfect. For example, a test that always reports 
positive for any individual in the population has 100% 
sensitivity but is useless. Another parameter is specificity 
(Sp), also called the true negative rate, is the probability 
that the test assigns a non-diseased individual as negative. 
It shows how specific the test is in detecting the absence 
of disease. Similarly, a perfect test has the specificity of 
100%. However, 100% specificity does not mean the test 
is perfect. For example, a test that always reports negative 
for any individual in the population has 100% specificity 
but is also useless. A test that either reports positive or 
negative all the time has either 0% specificity or 0% sensi-
tivity. An informative test should have Se >0 and Sp >0. We 
make this assumption in our following discussion.

Mathematically, sensitivity and specificity are condi-
tional probabilities,

	﻿‍ Se = P
{

T = 1 | D = 1
}

,‍�

	﻿‍ Sp = P
{

T = 0 | D = 0
}

.‍�
respectively. Note that

	﻿‍ P
{

T = 0 | D = 1
}

= 1 − Se ‍�

is called the false negative rate (FNR), the probability 
that a diseased individual is wrongly assigned to negative. 
Similarly,

	﻿‍ P
{

T = 1 |D = 0
}

= 1 − Sp ‍�

is called the false positive rate (FPR), the probability that 
a non-diseased individual is wrongly assigned to positive.

For each randomly selected individual, (D, T) is a bivar-
iate binary outcome. Since there are only four possible 
values for (D, T), we only need three parameters to 
specify its probability distribution. Here we express the 
joint distribution in terms of three parameters (p, Se and 
Sp),

	﻿‍ P
(
D = 1, T = 1

)
= P

(
T = 1 | D = 1

)
P
(
D = 1

)
= p · Se,‍�

	﻿‍ P
(
D = 1, T = 0

)
= P

(
T = 0 | D = 1

)
P
(
D = 1

)
= p

(
1 − Se

)
,‍�

	﻿‍ P
(
D = 0, T = 1

)
= P

(
T = 1 | D = 0

)
P
(
D = 0

)
=
(
1 − p

) (
1 − Sp

)
,‍�

	﻿‍ P
(
D = 0, T = 0

)
= P

(
T = 0 | D = 0

)
P
(
D = 0

)
=
(
1 − p

)
· Sp.‍�

From them we can calculate other quantities of interest. For 
example, the overall rate of misclassification is the proportion 
that the test result does not match the disease status, that is,

	﻿‍

Overall Misclassification Rate = P ⟨T ̸= D⟩ = P ⟨T = 1, D = 0⟩

+ P ⟨T = 0, D = 1⟩ = p
(
1 − se

)
+
(
1 − p

) (
1 − sp

)
. ‍�

Predictive values of a test
From the definition of regression,9 sensitivity and spec-
ificity are the predictions of test result based on disease 
status. This is just one side of the story. Since no test is 
perfect, we are interested in the proportions of individ-
uals who test positive and actually have the disease and 
the proportion of those who test negative and really have 
no disease. From the point of public health manage-
ment, we want to know how the test result can be used to 
predict the disease status. For example, what is the prob-
ability that a randomly selected individual who is positive 
really has the disease? This probability is called the positive 
predictive value. Mathematically,

	﻿‍ PPV = P
{

D = 1 | T = 1
}

.‍�

It is obvious that PPV=1 if and only if {T=1} is a subset of 
{D=1}. Otherwise, PPV <1. Similarly, the probability that 
a randomly selected individual with a negative test really 
does not have the disease is called the negative predictive 
value,

	﻿‍ NPV = P
{

D = 0 | T = 0
}
‍�

Sensitivity and specificity use the disease status to 
predict the test result, while the PPV and NPV use the test 
result to predict the disease status. Obviously, these two 
predictions are correlated.

Simple algebra shows that

	﻿‍
PPV = p·Se

p·Se+
(
1−p

)(
1−Sp

)
‍�

If Sp=1, then PPV=1. Otherwise,

	﻿‍
PPV =

(
p

1−p

)(
Se

1−Sp

)
(

p
1−p

)(
Se

1−Sp

)
+1‍�

The above expression shows that although PPV is a 
complicated function of the sensitivity and specificity, it 
only depends on Se/(1-Sp) and is an increasing function 
of Se/(1-Sp). Similarly,

	﻿‍
NPV =

(
1−p

)
·Sp(

1−p
)
·Sp+p

(
1−Se

)
‍�

If Se=1, then NPV=1. Otherwise,

	﻿‍
NPV =

(
1−p

p

)(
Sp

1−Se

)
(

1−p
p

)(
Sp

1−Se

)
+1‍�

The previous expression shows that although NPV is a 
complicated function of the sensitivity and specificity, it 
only depends on Sp/(1-Se) and is an increasing function 
of Sp/(1-Se).
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Figure 1  A typical ROC curve. ROC, receiver operating 
characteristic.

It is easy to prove that

	﻿‍
PPV − p =

p
(
1−p

)(
Se+Sp−1

)
p·Se+

(
1−p

)(
1−Sp

) ,
‍�

	﻿‍
NPV −

(
1 − p

)
=

p
(
1−p

)(
Se+Sp−1

)
(
1−p

)
·Sp+p

(
1−Se

) ,
‍�

	﻿‍ P
(
D = 1, T = 1

)
− P

(
D = 1

)
P
(
T = 1

)
= p

(
1 − p

) (
Se + Sp − 1

)
.‍�

These three equations imply the equivalence of 
following four statements:
1.	 The test result T and the disease status D are positively 

correlated.
2.	 Se − (1-Sp) ≥ 0.
3.	 PPV – p ≥ 0.
4.	 NPV - (1-p) ≥ 0.

Statements 3 and 4 indicate that no matter how bad 
the test is, as long as it is positively correlated with the 
disease status, the PPV is always greater than the propor-
tion of disease, and the NPV is always greater than the 
proportion of non-disease in the population. The test 
result is independent of the disease status if and only if 
Se − (1-Sp)=0. In this case, PPV=p and NPV=1-p.

Relations between test result and biomarker
In the last two sections we discussed sensitivity, specificity, 
PPV and NPV for a general test. Now suppose the test 
result is based on the quantitative value of a biomarker X. 
For example, the prostate-specific antigen is a biomarker 
widely used in diagnosing prostate cancer. Different tests 
may use different biomarkers. The biomarker used in a 
test is chosen based on clinical or pathological evidence.

The connection of the biomarker to the disease status is 
specified by the risk function,10 which is defined as,

	﻿‍ R
(
x
)

= P
(
D = 1|X = x

)
‍�

The risk function R(x) is the probability that the indi-
vidual has the disease if the value of the biomarker is x. 
For technical reasons, we make the following assumptions 
on the biomarker and risk function.

Assumption 1: X is a continuous variable and has a 
continuous probability distribution function.

Assumption 2: the risk function is strictly increasing so that 
individuals with a higher value of the biomarker tend to 
have the disease with a higher probability.

To find the exact form of the risk function, we need 
to know the joint distribution function of (D, X), which 
is unknown in practice. Usually we specify some analytic 
form for it. Since it is the conditional probability of D 
given X, we may specify a logistic regression model.11

After obtaining the measurement of the biomarker, 
the test needs to assign the individual to positive or nega-
tive based on some prespecified cut-off c. If X > c, the test 
assigns the individual to positive (T=1). Otherwise, the 
result is negative (T=0). From the definition of sensitivity 
and specificity, we can see that

	﻿‍ Se
(
c
)

= P
{

X > c | D = 1
}

,‍�

	﻿‍ Sp
(
c
)

= P
{

X ≤ c | D = 0
}

.‍�
From these two equations, we can see the sensitivity 

and specificity depend on two factors: (1) the biomarker 
X and (2) the cut-off c. Usually the biomarker is prespec-
ified; the major consideration is the choice of the cut-off. 
It is easy to see that the sensitivity (TPR) decreases with 
the cut-off, and the specificity increases with the cut-off. 
Remember that 1-Sp is the FPR. This means that both TPR 
and FNR are decreasing functions of the cut-off. There-
fore, Se(c) and 1-Sp(c) change in the same direction.

Monotone relations between predictive values, 
sensitivity and specificity
As discussed in the last section, if we let the cut-off c change 
in the range of X, the plot of Se(c) versus 1-Sp(c) is a curve 
within the unit square with two endpoints (0,0) and (1,1). 
This curve is called the receiver operating characteristic 
(ROC) curve of the test. Figure 1 is a typical ROC curve.

The ROC has been widely used in medical, engi-
neering, finance and many other areas. Some properties 
of the ROC have been discussed extensively in the liter-
ature. Many papers and books have been published on 
ROC curve. Here we state two results. The proof of them 
can be found in a technical paper.12

Theorem 1 . Under the assumptions 1 and 2, the ROC curve 
is concave (or upside-down U).

From the property of convex function, we know that 
under those two assumptions, the ROC curve is always 
above line segment OB, which means that Se − (1-Sp)≥0. 
From the end of the last section, this implies that the 
test result is always positively correlated with the disease 
status, PPV ≥p and NPV ≥1-p.
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Table 2  Numerical results from simulations

c Se(c) Sp(c) PPV(c) NPV(c)

p=0.1, β0=−2.5642

−2.5 0.9996 0.0070 0.1006 0.9940

−2.0 0.9982 0.0252 0.1022 0.9922

−1.0 0.9716 0.1731 0.1155 0.9821

0.0 0.8081 0.5342 0.1616 0.9616

1.0 0.4268 0.8711 0.2690 0.9319

2.0 0.1030 0.9862 0.4525 0.9082

3.0 0.0090 0.9995 0.6695 0.9008

p=0.2, β0=−1.5601

−2.5 0.9993 0.0077 0.2011 0.9766

−2.0 0.9975 0.0279 0.2042 0.9922

−1.0 0.9654 0.1897 0.2295 0.9564

0.0 0.7758 0.5689 0.3103 0.9103

1.0 0.3715 0.8945 0.4681 0.8506

2.0 0.0761 0.9906 0.6686 0.8109

3.0 0.0056 0.9997 0.8335 0.8009

p=0.3, β0=−1.0187

−2.5 0.9993 0.0087 0.3017 0.9654

−2.0 0.9971 0.0314 0.3061 0.9625

−1.0 0.9585 0.2089 0.3408 0.9216

0.0 0.7432 0.6041 0.4458 0.8459

1.0 0.3265 0.9132 0.6172 0.7598

2.0 0.0599 0.9932 0.7896 0.7114

3.0 0.0041 0.9998 0.9036 0.7008

NPV, negative predictive value; PPV, positive predictive value.

Table 1  Relations among Se, Sp, PPV and NPV

Sp PPV NPV

Se − − +

Sp + −

PPV −

NPV, negative predictive value; PPV, positive predictive value.

Figure 1 shows the graph of a typical ROC curve OPB. 
Each ROC curve has two special points: O=(0, 0), where 
the sensitivity is 0 and the specificity is 1 and the test 
assigns all individuals to negative; and B=(1, 1), where the 
specificity is 0 and the sensitivity is 1 and the test assigns 
all individuals to positive. There are two other extreme 
points usually not on the ROC curve but are of interest, 
A=(1, 0), where Sp=0, and Se=0 and the test does not offer 
any information about the disease; and C=(0, 1), where 
Sp=Se=1 and the test is perfect (usually not achievable in 
practice). All reasonable test results are points on the 
ROC curve strictly between O and B.

The predictive values are closely connected to the ROC 
curve. The slope of OP is Se/(1-Sp) and the slope of PB 
is (1-Se)/Sp. Since the ROC curve is concave, as point P 
moves from O to B, Se increases, Sp decreases and both 
slopes of OP and PB decrease. This fact can be rigorously 
proved using the property of concave functions.12 We 
have the following

Theorem 2. Under the assumptions 1 and 2, PPV decreases 
with the sensitivity, and the NPV decreases with Sp.

We summarise the relations among sensitivity, spec-
ificity, the PPV and the negative predictive in table  1. 
The ‘+’ sign means two quantities change in the same 
direction, where ‘−’ sign means they change in opposite 
directions.

Numerical study
In this section, we use some numerical examples to show 
how these four quantities change. Note that given a cut-
off c of the biomarker, sensitivity, specificity, positive and 
negative predictive value are all functions of c from which 
we can identify the changing pattern of each pair of them.

For simplicity, assume the biomarker X has a standard 
normal distribution. The risk function is assumed to be of 
the form of the logistic function

	﻿‍
R
(
x
)

=
exp

(
β0+x

)
1+exp

(
β0+x

) ,
‍�

From the probability theory, we know that the expected 
value of the risk function should equal the proportion p 
of the disease. Given each p, we determine unique param-
eter β0 in the risk function by numerical integration. For 
example, p=0.1, β0=−2.5642; p=0.2, β0=−1.5601; and p=0.3, 
β0=−1.0187.

Table 2 shows values of Se(c), Sp(c), PPV(c) and NPV(c) 
for c=−2.5,–2.0, −1.0, 0, 1, 2 and 3. We can see that Se and 
NPV are increasing functions of c, while Sp and PPV are 

decreasing functions of c. They are consistent with our 
conclusion developed above.

Conclusion
In this paper, we studied the relations among sensitivity, 
specificity, PPV and NPV. We assume the test result is 
based on the value of a biomarker, and the risk of the 
disease (the conditional probability of the disease given 
the biomarker) is a strictly increasing function of the 
biomarker. Under these assumptions, we find that: (1) 
the ROC curve is concave, (2) sensitivity and specificity 
change in opposite directions, (3) PPV and sensitivity 
change in opposite directions and (4) NPV and specificity 
change in opposite directions. The last two conclusions 
are a little bit counterintuitive.

As discussed in section 3, the PPV is 1 if and only if 
no non-diseased individuals can be assigned to positive. 
This does exclude the case that some diseased individ-
uals may be assigned to negative. PPV <1 if and only FPR 
>0. Under assumptions in section 4, the ROC curve is 
concave. When the sensitivity increases, the FPR increases 
at a faster rate than the sensitivity, which makes Se/FPR 
and PPV decrease. Increasing the sensitivity has the risk 
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of increasing the false positive rate, which hurts the PPV 
of the test. Similarly, increasing the specificity may hurt 
the negative value of the test. We should be careful if the 
sensitivity of a test is reported to be very high as it may be 
too good to be true. There exists a tradeoff between the 
sensitivity and the PPV unless the test is perfect.
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