
1Yang K, et al. General Psychiatry 2019;32:e100148. doi:10.1136/gpsych-2019-100148

Open access�

Homoscedasticity: an overlooked critical 
assumption for linear regression

Kun Yang,1 Justin Tu,2 Tian Chen3

To cite: Yang K, Tu J, Chen T.  
Homoscedasticity: an overlooked 
critical assumption for linear 
regression. General Psychiatry 
2019;32:e100148. doi:10.1136/
gpsych-2019-100148

Received 18 September 2019
Accepted 19 September 2019

1Department of Family Medicine 
and Public Health, University of 
California System, San Diego, 
California, USA
2PGY-2, Physical Medicine 
and Rehabilitation, University 
of Virginia Health System, 
Charlottesville, Virginia, USA
3Department of Mathematics 
and Statistics, University of 
Toledo, Toledo, Ohio, USA

Correspondence to
Dr Tian Chen, Department of 
Mathematics and Statistics, 
University of Toledo, Toledo, OH 
43606, USA;  
​tian.​chen@​utoledo.​edu

Biostatistical methods in psychiatry

© Author(s) (or their 
employer(s)) 2019. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

Summary
Linear regression is widely used in biomedical and 
psychosocial research. A critical assumption that is often 
overlooked is homoscedasticity. Unlike normality, the other 
assumption on data distribution, homoscedasticity is often 
taken for granted when fitting linear regression models. 
However, contrary to popular belief, this assumption 
actually has a bigger impact on validity of linear regression 
results than normality. In this report, we use Monte Carlo 
simulation studies to investigate and compare their effects 
on validity of inference.

Introduction
Linear regression (LR) is arguably the most 
popular statistical model used to facilitate 
biomedical and psychosocial research. LR 
can be used to examine relationships between 
continuous variables, and associations 
between a continuous and a categorical vari-
able. For example, by using one binary inde-
pendent variable, LR can be used to compare 
the means between two groups, akin to the 
two independent samples t-test. If we have a 
multilevel categorical independent variable, 
LR yields the analysis of variance (ANOVA) 
model. Although the t-test for unequal group 
variance is often used as an alternative for 
comparing group means when large differ-
ences in group variances emerge, the same 
homoscedasticity assumption underlying 
ANOVA is often taken for granted when this 
classic model is applied for comparing more 
than two groups. For ANOVA, much of the 
focus is centred on normality, with little atten-
tion paid to homoscedasticity.

Contrary to popular belief, the homosce-
dasticity assumption actually plays a more 
critical role than normality on validity of 
ANOVA. This is because the F-test, testing for 
overall differences in group means across all 
the groups (omnibus test), is more sensitive to 
heteroscedasticity than normality. Thus, even 
when data are perfectly normal, F-test will 
generally yield incorrect results, if large group 
variances exist. Although the Kruskal-Wallis 
(KW) test is applied when homoscedasticity is 
deemed suspicious,1 this test is less powerful 
than the F-test, since it discretises original data 

using ranks, a sequence of natural numbers 
such as 1, 2 and 3 to represent ordinal differ-
ences in the original continuous outcomes. 
An even more serious problem with the KW 
test is its extremely complex distribution of 
the test statistic and consequently limited 
applications in practice.2

Over the past 30 years, many new statistical 
methods have been developed to address the 
aforementioned limitations of the classic LR 
and associated alternatives. Such new models 
apply to cross-sectional and longitudinal 
data, the latter being the hallmark of modern 
clinical research. Semiparameter statistical 
models are the most popular, since they 
require one of the distribution assumptions 
and apply to continuous outcomes without 
changing the continuous scale.3 In this 
report, we use the Monte Carlo simulation 
study to investigate and compare results when 
one of the two assumptions is violated, and 
to show the importance of homoscedasticity 
for valid inference for LR. We will discuss and 
perform head-to-head comparison of power 
between the classic KW test and modern semi-
parametric models in a future article.

LR model
We start with a brief overview of the classic LR. 
Consider a continuous outcome of interest, ﻿‍Y ‍, 
and a set of ‍p‍ independent variables, ‍X1, X2, Xp‍. 
We are interested in modelling the relationship 
of ﻿‍Y ‍ with the independent variables. Given a 
sample of ‍n‍ subjects, the classic LR models this 
relationship as:

	﻿‍

Yi = β0 + β1Xi1 + β2Xi2 + L + βpXip+

εi, εi ∼ N
(
0, σ2

)
, 1 ≤ i ≤ n , ‍�

(1)

where ‍i‍ indexes the subjects, 

‍β0,β1,β2, K . . . ,βp‍ are the regression coef-
ficients (parameters), ‍εi‍ is the error term, 

‍N
(
µ, σ2)

‍ denotes the normal distribution with 
mean ‍µ‍ and variance ﻿‍σ2‍. The LR in equation 
(1) posits a linear association between the 
outcome (dependent variable) ﻿‍ Y ‍ and each 
of the independent variables. The latter have 
been called different names such as predictors, 
covariates and explanatory variables.
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The first part of LR,

	﻿‍ Yi = β0 + β1Xi1 + β2Xi2 + L + βpXip, 1 ≤ i ≤ n ,‍� (2)
is called the conditional (population) mean of ‍Yi‍ given 

the independent variables ‍X1, X2, K, Xp‍. On estimating the 
regression coefficients, this conditional mean can be calcu-
lated to provide an estimate of ‍Yi‍ for each subject. In addition 
to the assumed linear relationship, there are two additional 
assumptions in equation (1): (A) normal distribution and 
(B) homoscedasticity, or constant variance ﻿‍σ2‍ for all subjects.

All three assumptions play an important role in obtaining 
valid inference for regression coefficients. For example, 
if the association of ﻿‍Y ‍ with a particular independent vari-
able ‍X1‍ is quadratic, the linear model in equation (1) must 
also include ‍X2i1‍, since otherwise estimates of ‍β1‍ will gener-
ally be biased. Likewise, if the error term ‍εi‍ is not normally 
distributed, SEs of estimated coefficients may be incorrect. 
Both the linearity and normality have been receiving great 
coverage in the literature.

In contrast, the impact of homoscedasticity on 
statistical inference of regression coefficients has 
received much less attention. Most publications in the 
biomedical and psychosocial literature do not even 
acknowledge this assumption for their applications 
of LR. Contrary to popular belief, inference about 
regression coefficients is actually more sensitive to 
departures from homoscedasticity than normality. In 
fact, normality actually does not matter at all when 
sample size is relatively large. In contrast, homosce-
dasticity remains an issue regardless of how large the 
sample size becomes. Below we illustrate these facts 
using Monte Carlo (MC) simulated data. For ease of 
exposition, we focus on one-way ANOVA, but the same 
conclusions apply to general LR as well.

ANOVA model
One particularly popular special case of LR is the ANOVA 
model. This occurs when the independent variables 

‍X1, X2, K, Xp‍ are binary indicators, representing different 
levels of a categorical or ordinal variable for multiple groups. 
The conditional mean of ﻿‍Y ‍ in equation (2) becomes the 
group mean. For example, if there are three groups, we may 
use group 1 as the referent and the other two independent 
variables ‍X1, X2‍ to represent groups 2 and 3:

	﻿‍

Xi1 =





1 if subject i is in group 2

0 otherwise
Xi2 =




1 if subject i is in

group 3

0 otherwise ‍�
In this case, the LR in equation (1) becomes:


	

‍

Yi = β0 + β1Xi1 + β2Xi2 + εi =




β0 + εi

β0 + β1 + εi

β0 + β2 + εi

if subject i is from group 1

if subject i is from group 2

if subject i is from group 3‍
�

Thus, the regression coefficients become the group 
mean of ﻿‍Y ‍:

	﻿‍ µ1 = β0,µ2 = β0 + β1,µ2 = β0 + β2,‍�

where ‍µk‍ denotes the mean of ﻿‍Y ‍ for group ﻿‍k‍ (‍1 ≤ k ≤ K ‍).
Because of the relationship of the coefficient with the 

group mean, the ANOVA is often simply expressed as:

	﻿‍ Yki = µk + εki, εki ∼ N
(

0,σ2
)

, 1 ≤ i ≤ nk, 1 ≤ k ≤ K,‍� (3)

where ‍Yki‍ denotes the outcome from the i th subject 
within the k th group, ‍µk = E

(
Yki

)
‍ is the (population) 

mean of the kth group, and K is the total number of 
groups. For the one-way ANOVA in equation (3) the 
linearity assumption does not apply, as ‍µk‍ represents the 
group mean and no linear or any relationship is assumed 
between the group means. The normality and homosce-
dasticity become easier to interpret and check as well, as 
they apply to distributions of ‍Yki‍ within each group.

Under ANOVA, comparisons of group means across all 
groups are readily expressed by a null, ‍H0‍, and alternative 
‍Ha‍ hypothesis as:

	﻿‍

H0 : µi = µk for all 1 ≤ i < k ≤ I v.s.

Ha : µi ̸= µk for at least one pair i and k,1 ≤ i < k ≤ I.‍�
(4)

Under the null hypothesis ‍H0‍, all groups have the same 
mean. If ‍H0‍ is rejected, post hoc analyses are followed to 
determine the groups that have different group means. 
We focus on the hypothesis in equation (4) for overall 
group difference below, but the same conclusions apply 
to post hoc pairwise group comparisons as well.

ANOVA uses F-tests for testing the null hypothesis 
of no group difference in equation (4). This omnibus 
test is defined by elements of a so-called ANOVA table: 

Source df Sum of squares (SS)
Mean squares 
(MS)

Groups K−1

‍

SS
(

R
)

=
K∑

k=1
nk

(
Ȳk+ − Ȳ++

)2

‍
‍

MS
(

R
)

=

SS
(

R
)

/
(

K − 1
)

‍

Error N−K

‍

SS
(

E
)

=
k∑

k−1

nk∑
i=1

(
Yki − Yk+

)2

‍
‍

MS
(

E
)

=

SS
(

E
)

/
(

N − K
)

‍

Total N−1

‍

SS
(

Total
)

=
k∑

k=1

nk∑
i=1

(
Yki − Y++

)2

‍

 
In the above table,

	﻿‍
Yk+ =

nk∑
i=1

Yki

nk
, Y++ =

I∑
k=1

nm∑
i=1

Yki

N , N =
K∑

k=1
nk, 1 ≤ k ≤ K,

‍�

where ‍Yk+ =

nk∑
i=1

Yki

nk ‍ is the sample mean of group ﻿‍ k‍, 

‍Y++ =

I∑
k=1

nk∑
i=1

Yki

N ‍ is the sample mean of the entire sample (grand 
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mean), ﻿‍ N‍ is the total sample size from all groups, 
‍

n∑
i=1

Ai
‍
 

denotes sum of all ‍Ak‍, and 
‍

I∑
k=1

n∑
i=1

Aki
‍
 denotes sum of ‍Aki‍ over 

both indices k and i. The terms SS(R), SS(E) and SS(Total) are 
called the regression, error and total sum of squares, respec-
tively, and MS(R) and MS(R), obtained by dividing SS(R) and 
SS(E) by their respective df, are called the mean regression 
and the mean error sum of squares mean. The three sums of 
squares are related as:

	﻿‍ SS
(
Total

)
= SS

(
R
)

+ SS
(
E
)

,‍�
where ‍SS

(
R
)
‍ and ‍SS

(
E
)
‍ form a partition of ‍SS

(
Total

)
‍.

Under the null of no group difference, the sample 

group mean ‍Ȳk+ =

nk∑
i=1

Yki

nk ‍ will be close to the sample grand 

mean, ‍Ȳ++ =

I∑
k=1

nk∑
i=1

Yki

N ‍, in which case ‍SS
(
R
)
‍ will be close to 0 

and ‍SS
(
E
)
‍ will be close to ‍SS

(
Total

)
‍. Otherwise, ‍SS

(
R
)
‍ will 

be different from 0 with its magnitude reflecting differ-
ences between the group means and ‍SS

(
E
)
‍ will account 

for a smaller portion of ‍SS
(
Total

)
‍ in this case. Thus, rela-

tionships between SS(R) and SS(E) indicate if there is 
evidence of differences in group means. By normalising 
the two by number of groups and sample size, the F-test 
is defined by their normalised counterparts, MS(R) and 
MS(R) .

Under the null hypothesis H0, the F statistic, or the ratio 

‍
MS(R)
MS(E)‍, follows the F distribution:

	﻿‍ F = MS(R)
MS(E) ∼ FK−1,N−K ‍� (5)

where FI−1,N−I denotes the F distribution with K–1 
(numerator) df and N–K (denominator) df. As a smaller 
MS(R) relative to MS(E) indicates evidence supporting 
the null and vice versa, this is consistent with the fact that 
a larger value of the F statistic leads to rejection of the null 
and vice versa.

As the F-test is derived under ANOVA in equation (3), 
validity of the F distribution for the F statistic in equation 
(5) depends on (A) normality and (B) homoscedasticity. 
Under both assumptions, the outcomes ‍Yki‍ do follow a 
normal distribution for each group, and all groups have 
the same variance. As noted earlier, the extant literature 
has largely focused on normality with little discussion on 
homoscedasticity. Next, we use MC simulation to examine 
the performance of the F-test under departures from 
each assumption.

Simulation study
To evaluate the performance of the F-test when either 
normality or homoscedasticity is violated, we use MC simu-
lated data to create multiple samples from an ANOVA. 
By repeatedly testing the null of no group mean differ-
ence using each simulated sample and comparing the per 
cent of times when the null is rejected with a prespeci-
fied type I error, we can see how each assumption impacts 

the performance of the F-test. We start with specifying 
an ANOVA from which samples will be drawn using MC 
simulation.

For brevity and without loss of generality, we consider 
three groups with a common mean μ and group size n, in 
which case the ANOVA in equation (3) simplifies to:

	﻿‍ Yki = µ + εki, εki ∼ N
(
0, σ2) , 1 ≤ i ≤ n, 1 ≤ k ≤ 3.‍� (6)

We set ‍µ = 0‍, ﻿‍σ2 = 1‍ and consider testing the null of no 
group difference,

	﻿‍

H0 : µ1 = µ2=µ3 = 0,

Ha : µ1 ̸= 0 or µ2 ̸= 0 or µ2 ̸= 0.‍�
(7)

Thus, the null hypothesis H0 is true for the ANOVA in 
equation (6). If we set type I error level to, say, α=0.05, and 
repeatedly test the null hypothesis using data Yki sampled 
from the ANOVA in equation (6) using MC simulation, we 
expect to reject the null H05% of the times. We will refer 
to per cent of times when the null is rejected through 
repeated testing from multiple samples (MC simulated 
samples in the current setting) as empirical type I errors.

For evaluating the performance of the F-test under 
non-normal distribution, we simulate the error terms ‍εki‍ 
in equation (6) from (A) a centred and rescaled χ2 with 
1 df and (B) a centred and rescaled Weibull distribution 
with both shape and scale equal to 1, so the resulting 
distributions in both cases have mean 0 and variance 1. In 
this case, the simulated Yki have the same mean (μ=0) and 
variance (σ=1) across the three groups. However, as the 
Yki no longer follow the normal distribution, the F-test in 
equation (5) may not follow the F distribution, in which 
case we may not reject the null H0 5% of the times if we 
set the nominal level as α=0.05.

To evaluate the impact of homoscedasticity on type I 
errors, we consider two scenarios: (a) all three groups 
have different variances, and (b) one group has a different 
variance than the other two groups:

	﻿‍

Scenario (a) : σ2
1 = 1,σ2

2 = 3kσ2
1 ,σ2

3 = 9kσ2
1 , k = 1 10 100,

Scenario (b) : σ2
1 = 1,σ2

2 = 3kσ2
1 ,σ2

3 = 3kσ2
1 , k = 1 10 100.‍�

In each scenario above, we consider three sets of vari-
ances indexed by k (=1, 10, 100). As differences between 
the variances become larger as k varies from 1 to 10 to 
100, this setting will show if increased degree of hetero-
scedasticity will have a larger effect on type I errors.

To reduce the sampling variability, we set MC sample 
size to M=1000. We consider the three sample sizes (A) 
‍n = 10‍, (B) ‍n = 100‍ and (C) ‍n = 1000‍ to see if and how 
sample size will affect the performance of the F-test.

Shown in table 1 are empirical type I errors for testing the 
null of no group mean difference by the F-test from 1000 
MC simulated outcomes under the ANOVA in equation (6) 
with no violation and violation of each of the two assump-
tions. If none of the assumptions is violated, empirical p 
values are quite close to their nominal counterparts. When 
normality is not met, there is downward bias in empirical 
p values for sample size n=10, but the bias seems to have 
disappeared when n=100 and n=1000. When homoscedas-
ticity is violated, however, there is clearly upward bias in 
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Table 1  Empirical type I errors for testing the null of no difference in group mean across three groups in equation (7) from 
the F-test based on 1000 Monte Carlo simulated samples from the ANOVA in equation (6) under (A) no violation of normality 
and homoscedasticity, (B) violation of normality and (C) violation of homoscedasticity for sample size n=10, 100 and 1000 with 
nominal type I error α=0.05 and α=0.01

n=10 n=100 n=1000

α=0.01 α=0.05 α=0.01 α=0.05 α=0.01 α=0.05

No violation

Normality and homoscedasticity 0.007 0.043 0.014 0.057 0.01 0.051

Violation of normality

χ2 distribution 0.005 0.031 0.011 0.053 0.006 0.054

Weibull distribution 0.009 0.037 0.009 0.053 0.01 0.054

Violation of homoscedasticity

Scenario (i), k=1 0.019 0.056 0.013 0.061 0.032 0.073

Scenario (i), k=10 0.025 0.061 0.014 0.063 0.034 0.076

Scenario (i), k=20 0.025 0.059 0.013 0.063 0.034 0.077

Scenario (ii), k=1 0.012 0.043 0.01 0.054 0.016 0.059

Scenario (ii), k=10 0.018 0.05 0.012 0.06 0.022 0.066

Scenario (ii), k=20 0.017 0.051 0.012 0.057 0.022 0.065

ANOVA, analysis of variance.

both scenarios. Also, the bias becomes larger as the degree 
of heteroscedasticity increases under both scenarios. The 
first scenario has a larger bias than the second, which is 
expected since it has a higher degree of heteroscedasticity 
than the second scenario. Moreover, unlike the case of 
violation of normality, the upward bias becomes larger as 
sample size increases from 10 to 100 to 1000. An increased 
empirical type I error means the likelihood of rejecting the 
null hypothesis is higher than the specified nominal level, 
yielding a higher rate of false positives.

Discussion
In this report, we examined the performance of the F-test in 
one-way ANOVA using MC simulation when data violate the 
(1) normality and (2) homoscedasticity assumption. Our 
simulation results show that although there is downward 
bias in type I errors for extremely small sample size (n=10), 
it virtually disappears for moderate (n=100) and large 
(n=1000) sample sizes. The diminishing bias as sample size 
increases is not a coincidence and is actually the working of 
a mechanism known as the central limit theorem in statis-
tics.3 Thus, unless sample size is small (eg, less than n=50), 
normality can be ignored when applying ANOVA.

In contrast, the F-test is more sensitive to departures 
from homoscedasticity. Our simulation study results show 
that type I errors are upwardly biased when groups have 
different variances. Moreover, unlike violation of normality, 
the amount of bias persists and actually increases as sample 
size increases. Thus, one needs to pay close attention to 
this assumption when applying ANOVA. If violation of this 
assumption is suspected either by formal testing4 or rule 
of thumb (eg, the ratio of the largest to the smallest vari-
ance is larger than 2), one may need to apply other tests for 
comparing group means. For example, the KW test may be 

used for inference. However, as this test generally has lower 
power, one may opt for modern alternatives such as the 
semiparametric models, which provide inference for linear 
and more general regression models without imposing any 
distributional distribution.3 Unlike the KW test, semipara-
metric models use original continuous outcomes and thus 
provide more power than the KW test. We will compare 
the KW test and applications of semiparametric models to 
ANOVA in a future article.
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