Introduction
Type 2 diabetes (T2D) is a common metabolic disorder that affects approximately 10.5% of people 20–79 years old.1 The disease shortens life expectancy and burdens public healthcare systems. In addition to age, a combination of genetic and environmental factors may contribute to the development of T2D. These factors influence the onset, progression and associated comorbidities of the disease. Numerous risk factors have been reported for the illness, including adiposity, metabolic syndrome, sedentary lifestyle and cardiovascular conditions.2 3 Conversely, T2D and abnormal glucose metabolism are risk factors for myriad health conditions.4–6
The high comorbidity of T2D with major mental disorders is well established.7 It was estimated that the prevalence of T2D ranges from 5% to 22% in patients with psychiatric disorders.8 Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in children with high heritability. ADHD affects approximately 6%–7% of people aged 18 and under when diagnosed via the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria.9 It has been found that 30%–50% of people diagnosed in childhood continue to have ADHD into adulthood.10 ADHD substantially shares genetics with other common mental disorders, including major depressive disorder.11–14 In one of the recent studies, an association of the genetic liability to ADHD, as captured by the polygenic risk score, with T2D did not survive multiple test corrections, while the risk for type 1 diabetes (T1D) was uncovered with an odds ratio (OR) approximated as 1.21.15
The Mendelian randomisation (MR) approach has been widely used to explore causal associations between traits.16–19 A recent MR study reported a causal effect of ADHD on T2D (OR=1.14) and vice versa (OR=1.09),20 thus confirming earlier reports that utilised bivariate latent causal variable analysis.21 Additionally, evidence from epidemiological studies suggests that maternal prepregnancy diabetes is associated with an increased risk for ADHD with a modest effect size.22 However, the mechanisms underlying the connection between ADHD and T2D are largely unknown.
In the present study, we used two larger datasets on ADHD to validate the causal associations between this condition and T2D. Furthermore, we performed genetic correlation, polygenic overlap and literature-based analyses to evaluate genetic relationships between T2D and ADHD and explore the underlying mechanisms.