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Abstract
Major depressive disorder (MDD) is a devastating mental 
illness that affects approximately 20% of the world’s 
population. It is a major disease that leads to disability and 
suicide, causing a severe burden among communities. 
Currently available medications for treating MDD target 
the monoaminergic systems. The most prescribed 
medications include selective serotonin reuptake inhibitors 
and selective norepinephrine reuptake inhibitors. However, 
these medications have serious drawbacks, such as 
a delayed onset requiring weeks or months to reach 
efficacy and drug resistance, as one-third of patients 
are unresponsive to the medications. Therefore, it is 
imperative to develop novel therapies with rapid action, 
high efficacy and few adverse effects. The discovery of 
the rapid antidepressant effect of ketamine has triggered 
tremendous enthusiasm for studying new antidepressants 
that target the glutamatergic system in the central 
nervous system. Many agents that directly or indirectly 
modulate the glutamatergic system have been shown to 
provide rapid and lasting antidepressant action. Among 
these agents, ketamine, an antagonist of metabotropic 
glutamate 2/3 receptors, and scopolamine, an unspecific 
muscarinic acetylcholine receptor antagonist, have been 
extensively studied. In this review, we discuss the clinical 
and preclinical evidence supporting the antidepressant 
efficacy of these agents and the current understanding of 
the underlying mechanisms.

Introduction
Major depressive disorder (MDD) is a world-
wide devastating mental disorder character-
ised by a low mood, reduced interest and 
impaired cognitive functions.1 It has a life-
time prevalence of up to 20% of the world’s 
population, affecting both sexes and most 
ages, and is one of the leading causes of 
disability.2 Currently available medications 
mainly target the monoaminergic systems, 
such as selective serotonin and norepineph-
rine reuptake inhibitors. However, they 
have significant drawbacks, including slow 
onset and drug resistance.3 Current anti-
depressants were discovered in the 1960s, 
and there had been no breakthroughs in 

finding mechanistically different antidepres-
sants until the recent discovery of ketamine’s 
rapid antidepressant action.4–6 Ketamine is 
an N-methyl D-aspartate receptor (NMDA) 
antagonist that exerts rapid and long-lasting 
antidepressant effects in patients with MDD 
and treatment-resistant depression (TRD). 
The antidepressant action of ketamine is 
believed to be achieved by modulating the 
glutamatergic system.6 Following ketamine, 
many other agents that directly or indirectly 
modulate glutamate synapses have been 
found to have rapid antidepressant efficacy in 
clinical and preclinical studies. Other exten-
sively studied agents include antagonists 
of metabotropic glutamate 2/3 receptors 
(mGluR2/3) and scopolamine, a non-specific 
muscarinic acetylcholine receptor (mAChR) 
antagonist.3 7 8 To date, clinical trials have 
provided strong evidence supporting the 
efficacy and safety of ketamine in the treat-
ment of MDD, TRD, bipolar depression, post-
traumatic stress disorder (PTSD) and suicidal 
ideations.9 10 Clinical trials also support the 
efficacy of scopolamine in treating depres-
sion and bipolar depression; however, the 
effectiveness of scopolamine in TRD is still 
under study.11 Clinical studies on the effi-
cacy of mGluR2/3 antagonists in depression 
are still in the early phase, and few outcomes 
have been published. The mechanisms 
underlying the rapid antidepressant actions 
of these agents have been extensively studied 
in animal models of depression. It is gener-
ally agreed that ketamine, mGluR2/3 antag-
onists and scopolamine share a convergent 
mechanism: enhanced glutamatergic activity 
which activates brain-derived neurotrophic 
factor (BDNF) and the mammalian target of 
rapamycin complex-1 (mTORC1) signalling 
system, leading to neurogenesis.12 13 In this 
article, we review the clinical and preclinical 
evidence of the antidepressant efficacy of 
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ketamine, mGluR2/3 antagonists, and scopolamine and 
the underlying mechanisms.

Rapid antidepressant action of ketamine
Ketamine is a non-competitive antagonist of NMDA recep-
tors.14 The antidepressant effects of NMDA receptor antag-
onists have been reported for the first time in preclinical 
studies. It was found that competitive and non-competitive 
antagonists and partial agonists of NMDA receptors had 
antidepressant effects in a stress animal model, similar to 
clinically used antidepressants.15 Subsequently, it was found 
that a single anaesthetic dose of ketamine (160 mg/kg) 
significantly reduced immobility in the forced swim test in 
a rat model of depression.16 The first placebo-controlled, 
double-blinded clinical trial of ketamine in the treatment 
of depression was conducted on seven subjects with MDD. 
It was found that a single intravenous subanaesthetic dose 
of ketamine (0.5 mg/kg, 40 min infusion) significantly 
improved depressive symptoms within 72 hours.4 6 Another 
placebo-controlled, double-blind crossover study showed 
that a single intravenous dose of ketamine (0.5 mg/kg) 
induced rapid antidepressant effects that occurred as early 
as 2 hours after infusion and lasted a week.5 Since these 
pioneering studies, the antidepressant efficacy of ketamine 
has been generally replicated and demonstrated in clinical 
trials with TRD, bipolar disorder, suicidal ideation, PTSD 
and adolescent depression.

Approximately one-third of patients with depression 
respond inadequately to conventional medications and are 
diagnosed with TRD.3 TRD was defined as failure to respond 
to at least two antidepressant medications of different 
classes.17 18 Many clinical trials have demonstrated the effi-
cacy of ketamine for the treatment of TRD. An early clin-
ical study with a few subjects showed that a single dose of 
ketamine significantly improved depressive symptoms in 
71% of patients with TRD after 1 day, and 35% achieved 
response after 1 week.5 A subsequent study with a relatively 
large number of patients with TRD confirmed the rapid-
onset antidepressant efficacy of a single dose of ketamine.19 
Although a single dose of ketamine is effective, the effect may 
be transient. Therefore, repeated doses of ketamine were 
tested. It was found that multiple doses of ketamine, such 
as six doses in 2 weeks, had a cumulative effect lasting more 
than 3 months in some patients, and ketamine at multiple 
doses was safe and well tolerated.19–24

Ketamine has also been shown to be effective in the 
treatment of bipolar depression. A randomised, placebo-
controlled, double-blind, crossover add-on study showed that 
a single dose of ketamine (0.5 mg/kg) improved depressive 
symptoms as early as 40 min after the infusion, lasting 3 days 
in patients with bipolar TRD.25 More than 50% of patients 
responded to a single dose or multiple doses (six doses) of 
ketamine. These doses of ketamine were well tolerated.26 
Adolescent depression is common and associated with signif-
icant morbidity and suicide. A double-blind, randomised, 
placebo-controlled clinical trial found that intravenous 
ketamine in adolescents with TRD significantly improved 

symptoms and was well tolerated.27 In patients with PTSD, a 
single dose and repeated doses of ketamine have also been 
shown to improve depressive symptoms.28–30

In depressive patients with suicidal ideation, ketamine has 
also been shown to reduce suicidal ideations rapidly.31 In 
an open-label study of a single infusion, ketamine (0.5 mg/
kg) decreased suicidal ideation within 40 min, and the effect 
remained for 4 hours. Other depressive symptoms and anxiety 
also significantly improved.32 In a randomised, double-blind, 
placebo-controlled study, a single dose of ketamine (0.2 mg/
kg) reduced suicidal ideation 90 min after ketamine infusion 
in 88% of patients.33 Two infusions of ketamine over 2 days 
showed long-term improvements in suicidal patients.34 Thus, 
ketamine shows a rapid and persistent benefit for patients 
with suicidal behaviour.

Ketamine is a racemic mixture comprising equal parts of 
(R)-ketamine (or arketamine) and (S)-ketamine (or esket-
amine).35 Clinical trials have found that the intravenous 
infusion of ketamine exerts a rapid antidepressant effect.36 37 
The antidepressant effects lasted for several days or weeks. 
In preclinical studies, (R)-ketamine has been shown to be 
more effective than (S)-ketamine, but its effect has not been 
established in clinical trials.35 38 Randomised double-blind 
clinical trials have revealed the effectiveness of the intranasal 
form of (S)-ketamine in TRD and suicidal ideations.39 The 
antidepressant effect of intranasal ketamine was significant 
and rapid, and the effect persisted for more than 2 months 
when applied biweekly.36 39 The Food and Drug Administra-
tion approved the intranasal administration of (S)-ketamine 
in 2019 for TRD in adults. However, due to possible adverse 
effects such as dissociation, sedation, cognitive impairments 
and addiction, the use of ketamine is limited under certain 
conditions.20 36

Antagonists of group II metabotropic glutamate 
receptors (mGluRs)
Glutamate receptors mediate excitatory synaptic transmis-
sion in the central nervous system and are divided into two 
subtypes: ionotropic receptors and mGluRs.40 Ionotropic 
receptors are ion channels that mediate synaptic transmis-
sion, whereas mGluRs regulate synaptic transmission and 
plasticity by interacting with G proteins. mGluRs contain 
eight subtypes classified into three groups according to 
their coupled G proteins and functions.41 Group II mGluRs, 
including mGluR2/3, have been implicated in depres-
sion due to their antidepressant effects. The expression of 
mGluR2/3 was found to be significantly increased in the 
prefrontal cortex (PFC) of patients with depression. The 
same has been observed in animal models of depression, 
indicating the possible role of mGluR2/3 in depression.42

The rapid antidepressant effect of mGluR2/3 antag-
onists has mainly been found in animal studies.43 It was 
first shown that the intraperitoneal injection of (1R, 2R, 
3R, 5R and 6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-
fluorobicyclo(3.1.0)hexane-2,6-dicarboxylic acid (MGS0039, 
3 mg/kg) or (2S)-2-amino-2-((1S,2S)-2-carboxycycloprop-1-
yl)-3-(xanth-9-yl) propanoic acid (LY341495, 1 mg/kg), two 
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potent mGluR2/3 antagonists, significantly decreased the 
immobility time of forced swim and tail suspension tests in 
rats. Since then, many preclinical studies have shown that 
mGluR2/3 antagonists have rapid antidepressant effects 
in various animal models, including learnt helplessness44 
and olfactory bulb enucleation.45 Similar to ketamine, 
mGluR2/3 antagonists are also effective in models of depres-
sion in which conventional antidepressants are ineffective.46 
MGS0039 or LY341495 reversed depressive behaviours 
caused by chronic corticosterone administration in mice 
and rats, whereas traditional antidepressants did not affect 
this type of depression model.46 Moreover, in chronic unpre-
dictable stress and chronic social frustration models, a single 
dose of a mGluR2/3 antagonist could have a rapid antide-
pressant effect lasting for more than 1 week.47 48

In contrast to ketamine, studies have found that 
mGluR2/3 antagonists might not have adverse effects similar 
to ketamine.49–51 mGluR2/3 antagonists can protect cogni-
tive function. It has been shown that intraperitoneal admin-
istration of the mGluR2/3 antagonist MGS0039 enhanced 
social recognition memory52–54 and had anxiolytic effects in 
the conditional fear stress model and Vogel conflict drinking 
test.44 55 These results indicate that mGluR2/3 antagonists 
are promising therapeutics for depression, with fewer 
adverse effects than ketamine. However, clinical studies on 
the efficacy of mGluR2/3 antagonists in depression are still 
in the early phase and few outcomes have been published.43

Scopolamine: a mAChR antagonist
Hypersensitivity of the cholinergic system has been proposed 
to mediate the pathogenesis of depression.56 This notion 
was supported by early findings that cholinesterase inhibi-
tors, such as physostigmine, led to or aggravated depressive 
symptoms in healthy people and depressive patients.57 Thus, 
antagonism of the cholinergic system has been proposed to 
exert antidepressant effects. Scopolamine is a non-selective 
antagonist of mAChRs that has been shown to exert a rapid 
antidepressant effect.58 59 The first clinical trial to study 
the effects of scopolamine in patients with depression was 
conducted in 1991.60 Intramuscular injection of scopol-
amine (0.4 mg, three doses) was found to exert a small but 
significant antidepressant effect 24 hours after the injection. 
Subsequently, several well-designed double-blind placebo-
controlled trials have been conducted. Intravenous infusions 
of scopolamine at three doses (4.0 µg/kg, 15 min per dose) 
with 3–4 day intervals between doses resulted in significant 
reductions in depressive symptoms.7 Patients with depres-
sion and bipolar disorder were included in the trial. The 
antidepressant action of scopolamine was later replicated in 
a second double-blind placebo-controlled trial conducted 
by the same group of patients with purely unipolar depres-
sive patients. It has also been found that scopolamine exerts 
an antidepressant effect with greater efficacy in women.61 
However, the antidepressant action of scopolamine has 
not been replicated in some clinical studies, and it remains 
unclear whether scopolamine exerts comparable antidepres-
sant effects in patients with bipolar disorder.11 59 62 A clinical 

trial is ongoing in patients with only bipolar disorder.63 Clin-
ical trials are also needed to investigate the antidepressant 
effects of scopolamine in TRD.

Mechanisms underlying rapid antidepressants
Ketamine, mGluR2/3 antagonists and scopolamine have 
been shown to share a common mechanism for their rapid 
antidepressant actions: the activation of BDNF–mTORC1 
signalling cascades leading to neurogenesis.13 64 It was also 
agreed that these new antidepressants initially enhance 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) 
receptor activity in pyramidal neurons in the PFC and 
hippocampus, which increases the production and release 
of BDNF. BDNF subsequently activates the BDNF–mTORC1 
signalling pathway, leading to neurogenesis and restoration 
of neuronal circuitries.13 65 66

Increased activity of AMPA receptors
An increase in glutamate concentration in the PFC and 
the subsequent increase in AMPA receptor activity play 
crucial roles in the rapid antidepressant action of ketamine, 
scopolamine and mGluR2/3 antagonists.12 13 Consider-
able evidence has been reported to support the idea that 
enhanced AMPA receptor activity mediates the initial action 
of these antidepressants. Systemic administration or microin-
jection of the AMPA receptor antagonist 2,3-dioxo-6-nitro-7-
sulfamoyl-benzo(f)quinoxaline into the medial PFC blocked 
the antidepressant effects of all these agents.67

Enhanced BDNF production and release
BDNF is a growth factor that regulates neuronal growth, 
synaptogenesis and synaptic plasticity68 and also plays an 
important role in the pathophysiology of depression and 
treatment.69 Conventional antidepressants and electrocon-
vulsive therapy enhance BDNF and tropomyosin receptor 
kinase B (TrkB) mRNA expression in the hippocampus and 
cortical regions.70 71 Deletion of BDNF in the hippocampal 
dentate gyrus region reduced the antidepressant action.72 It 
was found that the expression level of BDNF decreased in 
the brain of depressed patients.73 74 The direct injection of 
BDNF into the hippocampus resulted in an antidepressant 
effect.75 Infusion of BDNF antibodies into the medial PFC 
blocks the antidepressant effect.76 Patients with depression 
carrying Met/Met, showing a deficit in BDNF production 
and release, did not respond to ketamine.77 78 Similarly, the 
rapid antidepressant action of scopolamine was attenuated 
in BDNF Val/Met knock-in mice and prevented by the infu-
sion of an anti-BDNF antibody into the medial PFC.79 The 
mGluR2/3 antagonists LY341495 and MGS0039 also require 
the activation of BDNF signalling pathways for their rapid 
antidepressant actions.47

BDNF–mTORC1 signalling pathways
BDNF binds to its primary receptor, TrkB, to activate 
several signalling pathways.68 It enhances the activity of 
AMPA receptors by increasing AMPA receptor transla-
tion and surface expression.80 Subsequent activation of 
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the phosphatidylinositol 3-kinase and mitogen-activated 
protein kinase signalling pathways leads to the activation of 
mTORC1, which facilitates phosphorylation of the synaptic 
p70S6 kinase and suppression of 4E binding proteins, 
resulting in the synthesis of proteins related to synaptogenesis 
and dendrite spine growth.13 Preclinical studies have shown 
that ketamine, mGluR2/3 antagonists and scopolamine all 
increase phospho-mTOR, phosphor-p70S6 kinase in the 
hippocampus and medial PFC of rodents.81 Pretreatment 
with the selective mTORC1 inhibitor rapamycin prevented 
the antidepressant actions.13 Thus, the mTORC1 signalling 
pathway is an integral molecular mechanism underlying the 
antidepressant action.

Disinhibition hypothesis
While ketamine, mGluR2/3 antagonists and scopolamine 
act on different receptors, they all activate the glutamatergic 
system and BDNF–mTORC1 signalling pathways, which 
are believed to underlie their antidepressant action.13 The 
initial mechanisms that increase glutamatergic activity and 
BDNF production are poorly understood. One hypothesis 
is the disinhibition of pyramidal neurons, which is proposed 
to be caused by the inhibition of GABAergic interneu-
rons.82 83 Silencing GABAergic interneurons in the PFC has 
been reported to induce a rapid antidepressant effect.84 
The antidepressant effect of ketamine requires the NMDA 
receptor subunit GluN2B in GABAergic interneurons but 
not in the pyramidal neurons in the PFC since the knock-
down of these receptors in the interneurons blocks the 
ketamine’s effect.85 Ketamine and scopolamine have been 
reported to inhibit pyramidal neurons by reducing the inhib-
itory input into the pyramidal cells.86 Furthermore, the anti-
depressant action of scopolamine was shown to depend on 
the inhibition of GABAergic interneurons and muscarinic 
receptors in the GABAergic neurons since the activation of 
GABAergic interneurons or knockdown of M1 receptors 
in the interneurons in the PFC blocked the antidepressant 
effect.82 84

Another theory is that ketamine blocks the spontaneous 
NMDA receptor activity of pyramidal neurons in the resting 
state, which inactivates eukaryotic elongation factor two 
kinase, leading to the disinhibition of the BDNF synthesis.87 88 
The antidepressant effect of ketamine has also been reported 
to be independent of the blockage of NMDA receptors. (2R, 
6R)-Hydroxynorketamine is a metabolite of ketamine, which 
is found to exert a rapid antidepressant action but does not 
block the NMDA receptors, and requires the activation of 
AMPA receptors, BDNF and mTORC1 signalling pathways.89

Interaction with serotonin (5-HT) and the dopamine system
Recent studies have indicated that the serotonergic system 
may play a critical role in the rapid antidepressant action of 
ketamine and mGluR2/3 antagonists.90 91 It was found that 
ketamine increased extracellular serotonin concentration in 
the medial PFC, which is mediated by the AMPA receptor 
activity in serotonergic neurons in the dorsal raphe nucleus 
(DRN).92 Similar to ketamine, mGluR2/3 antagonists 
also require the activation of 5-HT neurons in the DRN.67 

Furthermore, 5-HT1a receptors were found to mediate the 
effects of both ketamine and mGluR2/3 antagonists.93 94 
The activity of dopamine neurons in the ventral tegmental 
area may also play a role in the rapid antidepressant action.49 
Therefore, multiple systems and signalling pathways might 
be involved in the mechanisms underlying the antidepres-
sant action.

Summary
The discovery of the rapid antidepressant action of ketamine 
is a significant step toward the development of novel antide-
pressants. Since then, great attention has been paid to the 
glutamatergic system, as it is believed to probably mediate 
depression and antidepressant processes and be a new 
target in developing new antidepressants that will have fewer 
drawbacks than the current antidepressants. Ketamine, a 
mGluR2/3 antagonist, and scopolamine have been exten-
sively studied as novel rapid antidepressants. These studies 
have shed significant light on the cellular and molecular 
mechanisms underlying depression and antidepressant 
actions. It is now generally believed that BDNF–mTORC1-
neurogenesis is possibly a common signalling pathway shared 
by different antidepressants. The intranasal form of (S)-ket-
amine has been approved for clinical use in the treatment 
of TRD. Our understanding of the underlying mechanisms 
of rapid antidepressant action has advanced substan-
tially, and as a result, more new targets will be revealed to 
develop rapid, efficacious antidepressants. Further clinical 
trials are ongoing to investigate the possible extended use 
of ketamine. Clinical trials are being conducted for scopol-
amine, mGluR2/3 antagonists and other agents.
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