Introduction
Cocaine is one of the most prevalent illicit drugs worldwide, and cocaine use disorder (CUD) has become a major public health concern. Moreover, the overall mortality is substantially elevated in patients who use cocaine. The Global Burden of Disease study estimated that the age-adjusted prevalence of CUD was 64 per 100 000 population, especially in high-income countries.1 Beyond the rising mortality, chronic cocaine abuse and CUD were also associated with significant adverse abnormalities in brain function,2 leading to numbers of negative consequences including cognitive impairments, high impulsivity as well as aggressive behaviours, poor psychological well-being and even morbidity of other mental disorders.3 Psychotic symptoms and syndromes are among the common consequences of abusers, with approximately 40% of people affected.4 The prevalence of psychiatric-related symptoms is 11 times higher compared with the general population.5 Common symptoms include hallucinations, delusions, agitation, violence, irritability, anxiety as well as depression.6 Although acute and transient psychotic symptoms account for the largest proportion, there are a considerable number of patients who gradually develop into persistent related mental disorders. The long-lasting disorders lead to a greater disease and mental health burden, resulting in progressive social and occupational deterioration.7
Genetic risks are important aetiological factors that give rise to psychotic symptoms and syndromes among these patients.8 Moreover, cocaine-related psychiatric symptoms are quite similar to schizophrenia in terms of symptomatology and pathogenesis.9 In the meantime, individuals with schizophrenia spectrum disorders showed much heightened risk of substance abuse and exacerbating pre-existing psychosis.10 This evidence indicates that these two disorders might share predisposing genetic factors and neural signalling pathways. Several psychiatric-related overlap genes have been identified as potential mediators of cocaine-induced psychosis (CIP) and schizophrenia. Genetic variations of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1), solute carrier family 6 member 4 (SLC6A4), dystrobrevin binding protein 1 (DTNBP1) and superoxide dismutase 2 (SOD2)11 have been found to be significantly associated with both CUD resultant psychosis and schizophrenia. Experimental studies have shown that CIP symptoms correlate with dopaminergic and GABAergic6 mechanisms. Respectively, dopamine and gamma-aminobutyric acid (GABA)-related pathways were important mediators contributing to the symptomatology and pathology of schizophrenia. Taken together, understanding the affected pathways and specific gene expression profiles may help better uncovering disease-associated biomarkers for clinical conceptualisation and personalisation treatment of CUD and related psychosis. However, contrasting results have been observed in different gene expression studies and there is still lack of significant biomarkers of CIP. One possible reason is that substance use disorder is a disease involving multiple brain areas, including prefrontal cortex, midbrain limbic system, nucleus accumbens and ventral tegmental area. Second, gene expression profiles of peripheral cells may be different from postmortem brain tissues.
This problem can be partly solved by integrated analysis of gene expression profiles from multiple datasets, online databases and network pharmacology approach. The rapidly developing bioinformatics and data mining technologies have been widely applied to identify psychiatric disease-associated biomarkers that contribute to high-risk individual screening, diagnosis, classification, prognostic and recurrence prediction. On this basis, the aim of this study was to elucidate overlap gene expression changes in the pathogenesis of CIP and schizophrenia, in order to acquire new potential biomarkers for diagnostic and medication of these CUD and related psychiatry disorders accurately (figure 1).